$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

광도, CO2 농도 및 정식 후 생육시기에 따른 식물공장 재배 상추의 군락 광합성 모델 확립
Development and Validation of a Canopy Photosynthetic Rate Model of Lettuce Using Light Intensity, CO2 Concentration, and Day after Transplanting in a Plant Factory 원문보기

시설원예ㆍ식물공장 = Protected horticulture and plant factory, v.27 no.2, 2018년, pp.132 - 139  

정대호 (서울대학교 식물생산과학부) ,  김태영 (서울대학교 식물생산과학부) ,  조영열 (제주대학교 원예환경전공) ,  손정익 (서울대학교 식물생산과학부)

초록
AI-Helper 아이콘AI-Helper

작물의 생산량은 광합성과 밀접한 관계가 있으며, 광합성 속도는 다양한 환경 요인에 의해 변화한다. 광합성 속도는 작물의 생육 상태나 생육 속도를 판단하는 지표로 사용되며, 작물 재배 시설을 구축하는 데 고려해야 하는 중요한 요인이다. 이 연구의 목적은 광도, $CO_2$ 농도 및 생육 단계에 의해 변화하는 로메인 상추의 군락 광합성 속도 모델을 개발하는 것이다. 군락 광합성 속도는 정식 후 5, 10, 15, 20 일차에서 5단계의 $CO_2$ 농도($600-2,200{\mu}mol{\cdot}mol^{-1}$)와 5단계의 광조건($60-340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)이 처리된 3개의 밀폐 아크릴 챔버($1.0{\times}0.8{\times}0.5m$) 내에서 측정하였다. 먼저 세 가지 환경 요인을 사용하는 식들을 곱하여 만든 단순곱 모델을 구성하였다. 이와 동시에 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과, 단순곱 모델의 $R^2$는 0.923이었으며, 수정 직각쌍곡선 모델의 $R^2$는 0.941을 나타내었다. 따라서 수정 직각쌍곡선 모델이 광도, $CO_2$ 농도, 생육 단계의 3 변수에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 것으로 판단하였다. 본 연구에서 개발된 군락 광합성 모델은 식물공장에서 상추 재배를 위해 생육 단계별로 설정해야 할 최적의 광도와 $CO_2$ 농도를 결정하는 데 도움이 될 것으로 생각된다.

Abstract AI-Helper 아이콘AI-Helper

The photosynthetic rate is an indicator of the growth state and growth rate of crops and is an important factor in constructing efficient production systems. The objective of this study was to develop a canopy photosynthetic rate model of romaine lettuce using the three variables of $CO_2$

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 4. Canopy photosynthetic rates of the lettuce expressed with the modified rectangular hyperbola model according to light intensity and CO2 concentration at 5 (A), 10 (B), 15 (C), and 20 (D) days after transplanting.
  • For calculating the canopy photosynthetic rate, changes in the CO2 concentration inside the chamber were measured with a combination of light intensity and CO2 concentration: five light intensities (60, 130, 200, 270, and 340µmol·m-2·s-1) and five CO2 concentrations (600, 1,000, 1,400, 1,800, and 2,200µmol·mol-1).
  • 5m) to measure the canopy photosynthetic rate. Four growth stages of lettuce were used for the measurements: 5, 10, 15, and 20 DAT. For calculating the canopy photosynthetic rate, changes in the CO2 concentration inside the chamber were measured with a combination of light intensity and CO2 concentration: five light intensities (60, 130, 200, 270, and 340µmol·m-2·s-1) and five CO2 concentrations (600, 1,000, 1,400, 1,800, and 2,200µmol·mol-1).
  • 3B and 3C). In the canopy photosynthetic rates plotted on the three-dimensional space with light intensity and CO2 concentration (Fig. 4), the black dots show the canopy photosynthetic rate obtained from actual measurement and the curved surface is the estimated canopy photosynthetic rate acquired from the modified rect angular hyperbola model. The modified rectangular hyperbola model is expressed by Eq.
  • ); a, b, and c are regression parameters. Nonlinear regression analysis was performed in the SPSS (IBM, New York, NY, USA) statistical program using the measured canopy photosynthetic rate according to light intensity, CO2 concentration, and growth stage.
  • (2017) established a photosynthetic rate model with light intensity, temperature, and growth period, but it is still necessary to construct a model including CO2 concentrations, which are more important for photosynthesis. The objectives of this study were to analyze canopy photosynthetic rates at various combinations of CO2 concentration, light intensity, and growth stage and to develop a canopy photosynthetic rate model based on a rectangular hyperbola equation.
  • are regression parameters. The regression coefficients were determined through the nonlinear regression analysis of photochemical efficiency, carboxylation conductance, and dark respiration. The modified rectangular hyperbola model was constructed by substituting Eqs.
  • 5. Validation of the simple multiplication and modified rectangular hyperbola models by comparing measured and estimated canopy photosynthetic rates.​​​​​​​

대상 데이터

  • Yamazaki nutrient solutions with an electrical conductivity of 1.2 dS·m-1 were supplied to the plants.

데이터처리

  • Table 1. Regression coefficients and R2 values calculated through regression analysis in the modified rectangular hyperbola model according to growth stage.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. Acock, B.C., J.H.M. Thornley, and J.W. Wilson. 1971. Photosynthesis and energy conversion. In: Wareing P.F., Cooper, J.P. (Eds.), Potential crop production. Heinemmann Educational Publishers, London, United Kingdom. pp. 43-75. 

  2. Acock, B.C. and L.H. Allen Jr. 1985. Crop responses to elevated carbon dioxide concentrations. In: Strain, B.R., and J.D. Cure. (Eds.), Direct effects of increasing carbon dioxide on vegetation. US Department of Energy, Office of Energy Research, Office of Basic Energy Sciences, Carbon Dioxide Research Division. pp. 53-99. 

  3. Campbell, W.J., L.H. Allen, and G. Bowes. 1990. Response of soybean canopy photosynthesis to $CO_2$ concentration, light, and temperature. J. Exp. Bot. 41: 427-433. 

  4. Caporn, S.J.M. 1989. The effects of oxides of nitrogen and carbon dioxide enrichment on photosynthesis and growth of lettuce (Lactuca sativa L.). New Phytol. 111: 473-481. 

  5. Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149: 78-90. 

  6. Gaudreau, L., J. Charbonneau, L.P. Vezina, and A. Gosselin. 1995. Effects of photoperiod and photosynthetic photon flux on nitrate content and nitrate reductase activity in greenhouse-grown lettuce. J. Plant Nutr. 18: 437-453. 

  7. Goudriaan, J., H.H. van Laar, H. van Keulen, and W. Louwerse. 1985. Photosynthesis, $CO_2$ and plant production. In: Day, W., and R.K. Arkin. (Eds.), Wheat growth and modeling, vol. 86 (NATO ASI Series A). Plenum Press, New York. pp. 107-122. 

  8. Green, C.F. 1987. Nitrogen nutrition and wheat growth in relation to absorbed solar radiation. Agric. Forest Meteorol. 41: 207-248. 

  9. Hikosaka, K., T.O. Kumagai and A. Ito. 2016. Modeling canopy photosynthesis. In: Canopy Photosynthesis: From basics to applications, Springer. pp. 239-268. 

  10. Inada, K. and Y. Yasumoto. 1989. Effects of light quality, day length and periodic temperature variation on the growth of lettuce and radish plants. Jpn. J. Crop Sci. 58: 689-694. 

  11. Jung, D.H., D. Kim, H.I. Yoon, T.W. Moon, K.S. Park, and J.E. Son. 2016. Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying $CO_2$ concentrations and growth stages. Hortic. Environ. Biotechnol. 57: 487-492. 

  12. Jung, D.H., H.I. Yoon, and J.E. Son. 2017. Development of a three-variable canopy photosynthetic rate model of romaine lettuce (Lactuca sativa L.) grown in plant factory modules using light intensity, temperature, and growth stage. Protect. Hortic. Plant Fact. 26: 268-275. 

  13. Kaitala, V., P. Hari, E. Vapaavuori, and R. Salminen. 1982. A dynamic model for photosynthesis. Ann. Bot. 50: 385-396. 

  14. Kim, J.H., J.W. Lee, T.I. Ahn, J.H. Shin. K.S. Park, and J.E. Son. 2016. Sweet pepper (Capsicum annuum L.) canopy photosynthesis modeling using 3D plant architecture and light ray-tracing. Front. Plant Sci. 7: 1321. 

  15. Kim, S.H., J.H. Jeong, and L.L. Nackley. 2013. Photosynthetic and transpiration responses to light, $CO_2$ , temperature, and leaf senescence in garlic: Analysis and modeling. HortScience 138: 149-156. 

  16. Kim, W.S. and J.H. Lieth. 2012. Simulation of year-round plant growth and nutrient uptake in Rosa hybrida over flowering cycles. Hortic. Environ. Biotechnol. 53: 193-203. 

  17. Kozai, T. 2013. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proc. Jpn. Acad., Ser. B 89: 447-461. 

  18. Leadley, P.W., J.F. Reynolds, R. Flagler, and A.S. Heagle. 1990. Radiation utilization efficiency and the growth of soybeans exposed to ozone: a comparative analysis. Agric. Forest Meteorol. 51: 293-308. 

  19. Li, J., Z. Zou, and X. Wang. 2009. Effect of muskmelon leaf age on photosynthesis rate and other physiological parameters at different light density. Acta Hortic. 893: 785-790. 

  20. Li, K., Z. Li, and Q. Yang. 2016. Improving light distribution by zoom lens for electricity savings in a plant factory with light-emitting diodes. Front. Plant Sci. 7: 92. 

  21. Lin, W.C. 2001. Crop modelling and yield prediction for greenhouse-grown lettuce. In: IV International symposium on models for plant growth and control in greenhouses: modeling for the 21st century -agronomic and greenhouse crop models. pp. 159-164. 

  22. Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43: 1951-1956. 

  23. Mills, E. 2012. The carbon footprint of indoor cannabis production. Energy Policy 46: 58-67. 

  24. Mokhtarpour, H., C.B. Teh, G. Saleh, A.B. Selamat, M.E. Asadi, and B. Kamkar. 2010. Non-destructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Commun. Biometry Crop Sci. 5: 19-26. 

  25. Monsi, M. 1960. Dry-matter reproduction in plants 1. Schemata of dry-matter reproduction. Bot. Mag. 861: 81-90. 

  26. Niinemets, U. 2016. Leaf age dependent changes in withincanopy variation in leaf functional traits: a meta-analysis. J. Plant Res. 129: 313-338. 

  27. Olesen, J.E. and K. Grevsen. 1997. Effects of temperature and irradiance on vegetative growth of cauliflower (Brassica oleracea L. botrytis) and broccoli (Brassica oleracea L. italica). J. Exp. Bot. 48: 1591-1598. 

  28. Pavlou, G.C., C.D. Ehaliotis, and V.A. Kavvadias. 2007. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci. Hortic. 111: 319-325. 

  29. Perez-Pena, J. and J. Tarara. 2015. A portable whole canopy gas exchange system for several mature field-grown grapevines. VITIS - J. Grapevine Res. 43: 1-7. 

  30. Shimizu, H., M. Kushida, and W. Fujinuma. 2008. A growth model for leaf lettuce under greenhouse environments. Environ. Cont. Biol. 46: 211-219. 

  31. Takahashi, N., P.P. Ling, and J.M. Frantz. 2008. Considerations for accurate whole plant photosynthesis measurement. Environ. Cont. Biol. 46: 91-101. 

  32. Thornley, J.H.M. 1974. Light fluctuations and photosynthesis. Ann. Bot. 38: 363-373. 

  33. Thornley, J.H.M. 1976. Mathematical models in plant physiology: A quantitative approach to problems in plant and crop physiology. Academic Press, London. p. 318. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로