$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 상추(Lactuca sativa L.)의 군락 광합성 곡선의 효율적 도출 방법
An Efficient Method for Establishing Canopy Photosynthesis Curves of Lettuce (Lactuca sativa L.) with Light Intensity and CO2 Concentration Variables Using Controlled Growth Chamber 원문보기

시설원예ㆍ식물공장 = Protected horticulture and plant factory, v.29 no.1, 2020년, pp.43 - 51  

정대호 (서울대학교 식물생산과학부 및 농업생명과학연구원) ,  김태영 (서울대학교 식물생산과학부 및 농업생명과학연구원) ,  손정익 (서울대학교 식물생산과학부 및 농업생명과학연구원)

초록
AI-Helper 아이콘AI-Helper

군락 광합성 모델의 도출을 위하여 생육 챔버가 필요하며, 이를 위한 광합성의 효율적인 측정 방법이 필요하다. 본 연구의 목적은 내부 환경 제어가 가능한 생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 로메인상추(Lactuca sativa L.)의 군락 광합성 곡선을 도출하는 방법을 확립하는 것이다. 실험에 사용한 상추는 식물공장 모듈에서 재배되었으며, 군락 광합성을 측정하기 위하여 아크릴로 제작된 생육 챔버(1.0x0.8x0.5m)를 이용하였다. 첫 번째로, 다음의 두 방법을 적용하여 측정된 군락 광합성 속도를 통해 각 방법의 시정수를 계산하여 비교하였다. 즉, 1) CO2 농도를 고정(1,000μmol·mol-1) 하고 광도를 변화(340, 270, 200, and 130μmol·m-2·s-1) 시키거나, 2) 광도를 고정(200μmol·m-2·s-1)하고 CO2 농도를 변화(600, 1,000, 1,400, and 1,800μmol·mol-1) 시켰다. 두 번째로, 1)과 2)의 방식을 적용하여 군락 광합성을 측정했을 때, 특정 광도(200μmol·m-2·s-1)와 특정 CO2 농도(1,000μmol·mol-1)에서 측정된 군락 광합성 속도 값을 비교하였다. 실험 결과 CO2 농도를 변화시키는 방식의 시정수는 광도를 변화시키는 방식에 비해 3.2배 큰 값을 나타내었다. 광도를 변화시키며 측정할 때 군락 광합성 속도는 1분 이내에 안정되었고, CO2 농도를 변화시킬 경우에는 6분 이상의 시간이 소요되었다. 따라서 광도를 변화시키는 측정 방식이 생육 챔버를 이용하여 작물의 군락 광합성 속도를 측정할 때 적합한 방식임을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

For developing a canopy photosynthesis model, an efficient method to measure the photosynthetic rate in a growth chamber is required. The objective of this study was to develop a method for establishing canopy photosynthetic rate curves of romaine lettuce (Lactuca sativa L.) with light intensity and...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The objective of this study was to formulate a method for establishing canopy photosynthetic rate curves of romaine lettuce (Lactuca sativa L.) in a controlled growth chamber.
본문요약 정보가 도움이 되었나요?

참고문헌 (39)

  1. Bazot, S., H. Blum, and C. Robin. 2008. Nitrogen rhizodeposition assessed by a ( $NH_3$ )-N-15 shoot pulse-labelling of Lolium perenne L. grown on soil exposed to 9 years of $CO_2$ enrichment. Environ. Exp. Bot. 63:410-415. 

  2. Caporn, S.J.M. and W.A. Wood. 1990. A controlled­environment chamber for measurement of canopy photosynthesis by small stands of lettuce (Lactuca sativa L.). Plant Cell Environ. 13:489-493. 

  3. Carporn, S.J.M. 1989. The effects of oxides of nitrogen and carbon dioxide enrichment on photosynthesis and growth of lettuce (Lactuca sativa L.). New Phytol. 111:473-481. 

  4. Chang, Z.Q., Q. Feng, J.H. Si, Y.H. Su, H.Y. Xi, and J.L. Li 2009. Analysis of the spatial and temporal changes in soil $CO_2$ flux in alpine meadow of Qilian Mountain. Environ. Geol. 58:483-490. 

  5. Creese, C., S. Oberbauer, P. Rundel, and L. Sack. 2014. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and $CO_2$ for diverse species grown under contrasting irradiances. New Phytol. 204:92-104. 

  6. Del Pozo, A., P. Perez, D. Gutierrez, A. Alonso, R. Morcuende, and R. Martinez-Carrasco. 2007. Gas exchange acclimation to elevated $CO_2$ in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environ. Exp. Bot. 59:371-380. 

  7. Dutton, R.G., J. Jiao, M.J. Tsujita, and B. Grodzinski. 1988. Whole plant $CO_2$ exchange measurements for nondestructive estimation of growth. Plant Physiol. 86:355-358. 

  8. Elmore, C.D. 1980. The paradox of no correlation between leaf photosynthetic rates and crop yields In: Hesketh JD, Jones JW (Eds.), Predicting photosynthesis for ecosystem models, Vol. 2. Boca Raton, CRC Press, FL, pp 155-167. 

  9. Evans, J.R., and S. von Caemmerer. 1996. Carbon dioxide diffusion inside leaves. Plant Physiol. 110:339. 

  10. Evans, L.T. 1996. Crop evolution, adaptation and yield. Cambridge University Press, Cambridge, pp 146-152. 

  11. Flexas, J., A. Diaz-Espejo, J.A. Berry, J. Cifre, J. Galmes, R. Kaidenhoff, H. Medrano, and M. Ribas-Carbo. 2007. Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. J. Exp. Bot. 58:1533-1543. 

  12. Garcia, R.L., J.M. Norman, and D.K. McDermitt. 1990. Measurements of canopy gas exchange using an open chamber system. Remote Sens. Rev. 5:141-162. 

  13. Gross, L.J. and B.F. Chabot. 1979. Time course of photosynthetic response to changes in incident light energy. Plant Physiol. 63:1033-1038. 

  14. Inkham, C., P. Piriyapongpitak, and S. Ruamrungsri. 2019. Storage and growth temperatures affect growth, flower quality, and bulb quality of Hippeastrum. Hortic. Environ. Biotechnol. 60:357-362. 

  15. Austin, J., Y.A. Jeon, M.K. Cha, S. Park, and Y.Y. Cho. 2016. Effects of photoperiod, light intensity and electrical conductivity on the growth and yield of quinoa (Chenopodium quinoa Willd.) in a closed-type plant factory system. Kor. J. Hortic. Sci. Technol. 34:405-413. 

  16. Johnson, I.R., J.H.M. Thornley, J.M. Frantz, and B. Bugbee. 2010. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and $CO_2$ . Ann. Bot. 106:735-749. 

  17. Jung, D.H., D. Kim, H.I. Yoon, T.W. Moon. K.S. Park, and J.E. Son. 2016. Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying $CO_2$ concentrations and growth stages. Hortic. Environ. Biotechnol. 57:487-492. 

  18. Jung, D.H., H.I. Yoon, and J.E. Son. 2017. Development of a three-variable canopy photosynthetic rate model of romaine lettuce (Lactuca sativa L.) grown in plant factory modules using light intensity, temperature, and growth stage. Protect. Hortic. Plant. Fact. 26:268-275. 

  19. Kaipiainen, E.L. and P. Pelkonen. 2007. Requirements for obtaining maximum indices of photosynthesis and transpiration in attached leaves of willow plants grown in short. Russ. J. Plant Physiol. 54:309-313. 

  20. Kim, S. and H. Lieth. 2003. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Ann. Bot. 91:771-781. 

  21. Knight, S.L., C.P. Akers, S.W. Akers, and C.A. Mitchell. 1988. Minitron-Ii system for precise control of the plant-growth environment. Photosynthetica 22:90-98. 

  22. Langensiepen, M., M. Kupisch, M.T. Wijk, and F. van Ewert. 2012. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing. Agric. Forest Meteorol. 164:61-70. 

  23. Mcdermitt, D.K., J.M. Norman, J.T. Davis, T.M. Ball, T.J. Arkebauer, J.M. Welles, and S.R. Roerner. 1989. $CO_2$ response curves can be measured with a field-portable closed-loop photosynthesis system. Ann. Sci. For. INRA/EDP Sci. 46:416-420. 

  24. Mills, E. 2012. The carbon footprint of indoor cannabis production. Energy Policy 46:58-67. 

  25. Pastenes, C., E. Santa-Mari, R. Infante, and N. Franck. 2003. Domestication of the Chilean guava (Ugni molinae Turcz.), a forest understorey shrub, must consider light intensity. Sci. Hortic. 98:71-84. 

  26. Rappaport, F., D. Beal, A. Vermeglio, and P. Joliot. 1998. Time-resolved electron transfer at the donor side of Rhodopseudomonas viridis photosynthetic reaction centers in whole cells. Photosynth. Res. 55:317-323. 

  27. Rochette, P., B. Ellert, E.G. Gregorich, R.L. Desjardins, E. Pattey, R. Lessard, and B.G. Johnson. 1997. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can. J. Soil Sci. 77:195-203. 

  28. Schwartzkopf, H., and Stofan, P.E. 1981. A chamber design for closed ecological systems research. American Society of Mechanical Engineers, Intersociety Conference on Environmental Systems, San Francisco, CA, July 13-15, p. 5. 

  29. Sestak, Z., J. Catsky, and P.G. Jarvis. 1971. Plant photosynthetic production: Manual and methods, Junk Publisher, The Hague, p 819. 

  30. Shimizu, H., M. Kushida, and W. Fujinuma. 2008. A growth model for leaf lettuce under greenhouse envrionments. Environ. Control Biol. 46:211-219. 

  31. Shin, J.H., T.I. Ahn, and J.E. Son. 2011. Quantitative measurement of carbon dioxide consumption of a whole paprika plant (Capsicum annumm L.) using a large sealed chamber. Kor. J. Hortic. Sci. Technol. 29:211-216. 

  32. Shipp, J.L., X. Hao, A.P. Papadopoulos, and M.R. Binns. 1998. Impact of western flower thrips (Thysanoptera: Thripidae) on growth, photosynthesis and productivity of greenhouse sweet pepper. Sci. Hortic. 72:87-102. 

  33. Song, Q., H. Xiao, X. Xiao, and X.G. Zhu. 2016. A new canopy photosynthesis and transpiration measurement system (CAPTS) for canopy gas exchange research. Agric. Forest Meteorol. 217:101-107. 

  34. Steduto, P., O. Cetinkoku, R. Albrizio, and R. Kanber. 2002. Automated closed-system canopy-chamber for continuous field-crop monitoring of $CO_2$ and $H_2O$ fluxes. Agric. Forest Meteorol. 111:171-186. 

  35. Suh, S.U., Y.M Chun, N.Y. Chae, J. Kim, J.H. Lim, M. Yokozawa, M.S. Lee, and J.S. 2006. A chamber system with automatic opening and closing for continuously measuring soil respiration based on an open-flow dynamic method. Ecol. Res. 21:405-414. 

  36. Wagner, S.W. and D.C. Reicosky. 1992. Closed-chamber effects on leaf temperature, canopy photosynthesis, and evapotranspiration. Agron. J. 84:731-738. 

  37. Wheeler, R.M. 1992. Gas exchange measurements using a large, closed plant growth chamber. HortScience 27:777-780. 

  38. Wheeler, R.M., C.L. Mackowiak, G.W. Stutte, J.C. Sager, N.C. Yotio, L.M. Ruffe, R.E. Fortson, T.W. Dreschel, W. M. Knott, and K.A. Corey. 1996. NASA's biomass production chamber: a testbed for bioregenerative life support studies. Adv. Space Res. 18:215-224. 

  39. Yamazaki, K. 1982. Nutrient solution culture. Pak-kyo, Tokyo, Japan p. 251. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로