$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

과학 학습의 지식구성 과정에 대한 실제적 인식론 분석
Practical Epistemology Analysis on Epistemic Process in Science Learning 원문보기

초등과학교육 = Journal of Korean elementary science education, v.37 no.2, 2018년, pp.173 - 187  

맹승호 (서울교육대학교)

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to clarify the specific terms of epistemic and epistemological by reviewing the literature on epistemological understanding of science learning, examine the necessity of epistemic discourse analysis based on the view of social epistemology, and provide an exemplar of pra...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
NRC에서 학교 과학 탐구를 수행하는데 필요한 본질적 특징으로 제기했던 다섯 가지 요소는 무엇인가? 이러한 특징은 Inquiry and National Science Education Standards (NRC, 2000)에서 학교 과학 탐구를 수행하는데 필요한 본질적 특징으로 제기했던 다섯 가지 요소와 그 흐름을 같이하고 있다. 즉, 1) 과학과 관련된 문제를 인식하고, 이를 해결하는 활동에 참여한다.2) 과학적 문제 해결에 필요한 설명을 개발하고 평가할 수 있게 해주는 증거를 중요하게 생각한다.3) 증거에 기반하여설명을 이끌어낸다.4) 대안적인 다른 설명과 비교하여 자신의 설명을 평가한다.5) 자신의 설명에 대해 동료와 이야기하고, 이를 정당하다고 주장한다. 여기서 강조된 것은 무엇이 증거가 될 수 있고, 증거를 어떻게 찾고, 그 증거를 이용하여 설명을 어떻게 만들어 내느냐가 과학 탐구에서 중요하다는 것이다(Duschl, 2003). 이와 같이 과학교육 정책 문서들에서 과학적 실행을 도입하고, 과학 탐구에서 증거와 설명을 강조한 것은 과학 탐구의 절차를 익히거나 관찰, 측정, 분류 등의 과정 기능(process skill) 요소를 이해하는 것을 넘어서 과학 지식을 학습할 때 학생들이 그것을 어떻게 알게 되고, 왜 그것이 옳다고 믿고, 또 이를 타인에게 어떻게 이해시킬 수 있는지 등을 판단하는 과학 학습의 인식론적 측면을 강조한 것이다(Duschl, 2008; NRC, 2007).
2015 교육과정(MOE, 2015)은 과학 교과의 성격을 어떻게 정의하였는가? 2015 교육과정(MOE, 2015)은 과학 교과의 성격을 ‘과학 지식과 탐구 방법을 학습’하는 것으로 정의하며, 과학 교과의 목표로서 ‘과학적으로 탐구하는 능력을 기른다’와 ‘과학의 핵심 개념을 이해한다’ 를 구분하였다. 또한, 과학과 교육과정의 내용 체계에서 ‘기능’이라는 범주로 ‘문제 인식, 탐구설계와 수행, 자료의 수집/분석/해석, 수학적 사고와 컴퓨터 활용, 모형의 개발과 사용, 증거에 기초한 토론과 논증, 결론 도출 및 평가, 의사소통’을 포함하고 있다.
NRC는 과학자들이 수행하는 과학 활동들을 어떻게 서술하였는가? 2015 개정 과학과 교육과정은 과학 탐구를 과학의 방법으로서 과학교육의 범주 안에 포함하였지만 학생들이 습득해야 할 ‘기능’으로 다룸으로써 과학적 실행의 요소들을 과학 지식 또는 과학의 핵심 개념과 분리하여 제시한 것이다. 이와 관련하여 NRC(2012)는 “과학자들이 수행하는 과학 활동들은 과학자와 기관 간의 네트워크, 과학자들이 말하고 글을 쓰는 특별한 방식, 자연 현상 또는 그 시스템을 표현하는 모델을 개발하기, 기대되는 결과를 추론하기, 적절한 기기를 활용하고, 관찰과 실험을 통해 가설을 검증하기 등과 같은 여러 활동들의 총체”(NRC, 2012, p. 43)라고 과학적 실행의 의미를 서술한 바 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (53)

  1. Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S. & Reiser, B. J. (2016). Epistemology in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082-1112. 

  2. Chin, C. & Brown, D. E. (2002). Student-generated questions: A meaningful aspect of learning in science. International Journal of Science Education, 24(5), 521-549. 

  3. Christie, F. & Martin, J. R. (1997). Genre and institution: Social process in the workplace and school. New York, NY: Continuum. 

  4. Conley, A. M., Pintrich, P. R., Vekiri, I. & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29, 186-204. 

  5. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32, 268-291. 

  6. Duschl, R. A. (2003). Assessment of inquiry. In J. M. Atkin & J. Coffey(Eds.), Everyday assessment in the science classroom (pp. 41-59). Arlingon, VA: NSTA Press. 

  7. Elby, A. & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554-567. 

  8. Ford, M. J. & Wargo, B. M. (2012). Dialogic framing of scientific content for conceptual and epistemic understanding. Science Education, 96(3), 369-391. 

  9. Goldman, A. I. & Whitcomb, D. (2011). Social epistemology: Essential readings. New York, NY: Oxford University Press. 

  10. Greene, J. A., Sandoval, W. A. & Braten, I. (2016). Handbook of epistemic cognition. New York, NY: Routledge. 

  11. Ha, H. & Kim, H-B. (2017). Exploring responsive teaching’ effect on students’ epistemological framing in small group argumentation. Journal of the Korean Association for Science Education, 37(1), 63-75. 

  12. Hammer, D. & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169-190). Mahwah, NJ: Erlbaum. 

  13. Hammer, D. & Elby, A. (2003). Tapping epistemological resources for learning physics. The Journal of the Learning Sciences, 12, 53-90. 

  14. Hammer, D., Elby, A., Scherr, R. E. & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89-120). Greenwich, CT: Information Age Publishing. 

  15. Hamza, K. M. & Wickman, P-O. (2013). Supporting students’ progression in science: Continuity between the particular, the contingent, and the general. Science Education, 97, 113-138. 

  16. Hofer, B. K. (2001). Personal epistemological research: Implications for learning and teaching. Journal of Educational Psychology Review, 13, 353-383. 

  17. Hofer, B. K. (2016). Epistemic cognition as a psychological construct: Advancements and challenges. In J. A. Greene, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 19-38). New York, NY: Routledge. 

  18. Hofer, B. K. & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67, 88-140. 

  19. Jimenez-Aleixandre, M. P. & Crujeiras, B. (2017). Epistemic practices and scientific practices in science education. In K. S. Taber & B. Akpan (Eds.), Science education: An international course companion (pp. 69-80). Rotterdam, The Netherlands: Sense Publishers. 

  20. Kelly, G. J. (2016). Methodological considerations for the study of epistemic cognition in practice. In J. A. Greene, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 393-408). New York, NY: Routledge. 

  21. Kelly, G. J. & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86, 314-342. 

  22. Khishfe, R. & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578. 

  23. King, P. & Kitchener, K. (1994). Developing reflective judgement: Understanding and promoting intellectual growth and critical thinking in adolescents and adults. San Francisco: Jossey-Bass. 

  24. Kitchener, R. (2002). Folk epistemology: An introduction. New Ideas in Psychology, 20, 89-105. 

  25. Kwon, J-S. & Kim, H-B. (2016). Exploring small group argumentation shown in designing an experiment: Focusing on students' epistemic goals and epistemic considerations for activities. Journal of the Korean Association for Science Education, 36(1), 45-61. 

  26. Lee, C-E. & Kim, H-B. (2016). Understanding the role of wonderment questions related to activation of conceptual resources in scientific model construction: Focusing on students’ epistemological framing and positional framing. Journal of the Korean Association for Science Education, 36(3), 471-483. 

  27. Lee, M-H., Johanson, R. E. & Tsai, C. C. (2008). Exploring Taiwanese high school students’ conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92, 191-220. 

  28. Lidar, M., Lundqvist, E. & Ostman, L. (2006). Teaching and learning in the science classroom: The interplay between teachers’ epistemological moves and students’ practical epistemology. Science Education, 90, 148-163. 

  29. Ligozat, F., Wickman, P.-O. & Hamza, K. (2011). Using practical epistemology analysis to study the teacher's and students' joint action in the mathematical classroom. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (pp. 2472-2481). 

  30. Rzeszow, Poland: University of Rzeszow. Liu, S. Y. & Tsai, C. C. (2008). Differences in the scientific epistemological views of undergraduate students. International Journal of Science Education, 30, 1055-1073. 

  31. Lundqvist, E., Almqvist, J. & Ostman, L. (2009). Epistemological norms and companion meanings in science classroom communication. Science Education, 93, 859-874. 

  32. Maeng, S. & Kim, C-J. (2011). Variations in science teaching modalities and students’ pedagogic subject positioning through the discourse register and language code. Science Education, 95(3), 431-457. 

  33. Maeng, S., Park, Y-S. & Kim, C-J. (2013). Methodological review of the research on argumentative discourse focused on analyzing collaborative construction and epistemic enactments of argumentation. Journal of the Korean Association for Science Education, 33(4), 840-862. 

  34. Ministry of Education(MOE) (2015). 2015 revised science curriculum. Ministry of Education 2015-74 [Issue 9]. 

  35. National Research Council (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press. 

  36. National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Washington, DC: National Academy Press. 

  37. National Research Council. (2012). A framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Washington, DC: The National Academies Press. 

  38. NGSS Lead States (2013). Next generation science standards. Achieve Inc. 

  39. Oh, P. S. & Ahn, Y. (2013). An analysis of classroom discourse as an epistemic practice: Based on elementary science classrooms. Elementary Science Education, 32(3), 269-284. 

  40. Oh, P. S. & Ahn, Y. (2015). Exploration of discursiveepistemic mechanisms in high school earth science lessons. Journal of Korean Earth Science Society, 36(4), 390-403. 

  41. Oh, P. S. (2014). Characteristics of teacher learning and changes in teachers' epistemic beliefs within a learning community of elementary science teachers. Elementary Science Education, 33(4), 683-699. 

  42. Oh, P. S. & Campbell, T. (2013). Understanding of science classrooms in different countries through the analysis of discourse modes for building 'Classroom Science Knowledge' (CSK). Journal of the Korean Association for Science Education, 33(3), 597-625. 

  43. Quennerstedt, M. (2013). Practical epistemologies in physical education practice. Sport, Education and Society, 18 (3), 311-333. 

  44. Russ, R. (2014). Epistemology of science vs. epistemology for science. Science Education, 98, 388-396. 

  45. Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634-656. 

  46. Sandoval, W. A. & Millwood, K. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. 

  47. Schommer-Aikins, M. (2002). An evolving theoretical framework for an epistemological belief system. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 103-108). Mahwah, NJ: Lawrence Erlbaum. 

  48. Tsai, C. C. (1999). Laboratory exercises help me memorize the scientific truths: A study of eighth graders' scientific epistemological views and learning in lab activities. Science Education, 83, 654-674. 

  49. Tsai, C. C. (2000). Relationships between student scientific epistemological beliefs and perceptions of constructivist learning environments. Educational Research, 42, 193-205. 

  50. Wickman, P-O. (2004). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88, 325-344. 

  51. Wickman, P-O. & Ostman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86, 601-623. 

  52. Wittgenstein, L. (1967). Philosophical investigations (3rd ed.). Oxford, UK: Blackwell. 

  53. Yang, F. Y. (2005). Student views concerning evidence and the expert in reasoning a socio-scientific issue and personal epistemology. Educational Studies, 31, 65-84. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로