최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기대한원격탐사학회지 = Korean journal of remote sensing, v.34 no.3, 2018년, pp.553 - 564
김정빈 (연세대학교 건설환경공학과) , 호현주 (연세대학교 건설환경공학과) , 엄명진 (연세대학교 건설환경공학과) , 김연주 (연세대학교 건설환경공학과)
Water use efficiency (WUE) is the amount of carbon uptake per unit of water use, which is a key measure of the functions of terrestrial ecosystems, as it is related to both the hydrologic and carbon cycles. Furthermore, it can vary with many factors, such as climate conditions and land cover charact...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
물 이용효율과 가뭄의 상관관계는 무엇인가? | 기후의 물 이용효율 영향 중에서도, 특히 가뭄의 영향이 주요하게 논의되어왔다. 건조한 환경에서 식물의 기공 전도도가 적응함에 따라 물 이용효율이 증가하지만(Law et al., 2002; Campos et al., 2013), 극심한 가뭄일 경우, 물 이용효율이 감소하는 현상이 관측되기도 하였다(Reichstein et al., 2002; Reichstein et al. | |
IPCC에서 예상하는 기후 변화는 무엇인가? | IPCC 제 5차 평가보고서(IPCC, 2014)에 따르면, 21세기 말까지 지구의 평균 온도가 1.9-4.3°C 증가하고, 강수 특성 역시 상당히 변할 것으로 예측된다. 이런 기후 변화는 자연 및 사회 시스템에 광범위하게 영향을 미칠 수 있다. | |
물 이용효율이란 무엇인가? | 최근 대두되고 있는 기후변화는 물과 탄소의 순환으로 이뤄진 생태계 간의 상호작용으로 인해 발생한다. 이를 분석하기 위해 물 이용효율(Water Use Efficiency, WUE)이 사용되는데, 이는 광합성 시 사용되는 수분 대비 흡수되는 탄소의 비율이다. 물 이용효율은 주변 환경의 기상 및 지표 조건에 영향을 받으며, 생태계의 변화를 반영하는 지표다. |
An, S.I., K.J. Ha, K.H. Seo, S.W. Yeh, S.K. Min, and C.H. Ho, 2011. A review of recent climate trends and causes over the Korean peninsula, Climate Change Research, 2(4): 237-251.
Baldocchi, D., 1994. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency, Agricultural and Forest Meteorology, 67(3-4): 291-321.
Baldocchi, D.D. and K.B. Wilson, 2001. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales, Ecological Modelling, 142(1-2): 155-184.
Bacon, M.A., 2004. Water use efficiency in plant biology, Wiley-Blackwell, Oxford, U.K.
Beer, C., P. Ciais, M. Reichstein, D. Baldocchi, B. Law, D. Papale, J. Soussana, C. Ammann, N. Buchmann, D. Frank, D. Gianelle, I.A. Janssens, A. Knohl, B. Kostner, E. Moors, O. Roupsard, H. Verbeeck, T. Vesala, C.A. Williams, and G. Wohlfahrt, 2009. Temporal and among-site variability of inherent water use efficiency at the ecosystem level, Global Biogeochemistry Cycles, 23(2).
Cleugh, H.A., R. Leuning, Q. Mu, and Running, S.W., 2007. Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sensing of Environment, 106(3): 285-304.
Davi, H., E. Dufrene, C. Francois, G. Le Maire, D. Loustau, A. Bosc, S. Rambal, A. Granier, and E. Moors, 2006. Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems, Agriculture and Forest Meteorology, 141(1): 35-56.
Dong, G., J. Guo, J. Chen, G. Sun, S. Gao, L. Hu, and L. Wang, 2011. Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in Northeast China, Ecohydrology, 4(2): 211-224.
Gerten, D., Y. Luo, G. Le Maire, W. Parton, C. Keough, E. Weng, C. Beier, P. Cias, W. Cramer, J. Dukes, P. Hanson, A. Knapp, S. Linder, D. Nepstad, L. Rustad, and A. Sowerby, 2008. Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones, Global Change Biology, 14(10): 2365-2379.
Heinsch, F.A., M. Reeves, P. Votava, S. Kang, C. Milesi, J. Glassy, W.M. Jolly, R. Loehman, C.F. Bowker, J.S. Kimball, R. Nemani, and S.W. Running, 2003. User's guide GPP and NPP (MOD17A2/A3) products NASA MODIS land algorithm, University of Montana, Missoula, Montana, U.S.
Holdridge, L.R., 1947. Determination of world plant formations from simple climatic data, Science, 105(2727): 367-368.
Hogg, E.H., 1994. Climate and the southern limit of the western Canadian boreal forest, Canadian Journal of Forest Research, 24(9): 1835-1845.
Hosking, J.R.M., 1990. L-moments: Analysis and Estimation of Distributions using Linear Combinations of Order Statistics, Journal of the Royal Statistical Society: Series B, 52(1): 105-124.
Hu, Z., G. Yu, Y. Fu, X. Sun, Y. Li, P. Shi, Y. Wang, and Z. Zheng, 2008. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China, Global Change Biology, 14(7): 1609-1619.
Intergovernmental Panel on Climate Change, 2014. Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Jiang, C. and C. Ryu, 2016. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS), Remote Sensing of Environment, 186: 528-547.
Joyce, R.J., J.E. Janowiak, P.A. Arkin, and P. Xie, 2004. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution, Journal of Hydrometeorology, 5(3): 487-503.
Keenan, T.F., D.Y. Hollinger, G. Bohrer, D. Dragoni, J.W. Munger, H.P. Schmid, and A.D. Richardson, 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499: 324-327.
Korea Meteorological Administration, 2015. Annual Climatological Report 2014, Korea Meteorological Administration, Seoul, Korea.
Kuglitsch, F.G., M. Reichstein, C. Beer, A. Carrara, R. Ceulemans, A. Granier, I.A. Janssens, B. Koestner, A. Lindroth, D. Loustau, G. Matteucci, L. Montagnani, E.J. Moors, D. Papale, K. Pilegaard, S. Rambal, C. Rebmann, E.D. Schulze, G. Seufert, H. Verbeeck, T. Vesala, M. Aubinet, C. Bernhofer, T. Foken, T. Grunwald, B. Heinesch, W. Kutsch, T. Laurila, B. Longdoz, F. Miglietta, M.J. Sanz, and R. Valentini, 2008. Characterisation of ecosystem water-use efficiency of European forests from eddy covariance measurements, Biogeosciences Discuss, 5: 4481-4519.
Law, B., E. Falge, L. Gu, D. Baldocchi, P. Bakwin, P. Berbigier, K. Davis, A. Dolman, M. Falk, J. Fuentes, A. Goldstein, A. Granier, A. Grelle, D. Hollinger, I. Janssens, P. Jarvis, N. Jensen, G. Katul, Y. Mahli, G. Metteucci, T. Meyers, R. Monson, W. Munger, W. Oechel, R. Olson, K. Pilegaard, K. Paw, H. Thorgeirsson, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy, 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agriculture and Forest Meteorology, 113(1-4): 97-120.
Liang, N. and K. Maruyama, 1995. Interactive effects of CO2 enrichment and drought stress on gas exchange and water-use efficiency in Alnus Firma, Environmental and Experimental Botany, 35(3): 353-361.
Liu, Y., J. Xiao, W. Ju, Y. Zhou, S. Wang, and X. Wu, 2015. Water use efficiency of China's terrestrial ecosystems and responses to drought, Science Report, 5: 13799.
Lu, X.L. and Q.L. Zhuang, 2010. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data, Remote Sensing of Environment, 114: 1924-1939.
Luo, Y., D. Gerten, G. Le Maire, W. Parton, E. Weng, X. Zhou, C. Keough, C. Beier, P. Cias, W. Cramer, J. Dukes, B. Emmett, P. Hanson, A. Knapp, S. Linder, D. Nepstad, and L. Rustad, 2008. Modeled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones, Global Change Biology, 14(9): 1986-1999.
McKee, T.B., N.J. Doesken, and J. Kleist, 1993. The Relationship of Drought Frequency and Duration to Time Scales, Proc. of 8th Conference on Applied Climatology, Anaheim, CA, Jan. 17-22, pp. 179-184.
Monteith, J.L., 1972. Solar radiation and productivity in tropical ecosystems, Journal of Applied Ecology, 9(3): 747-766.
Mu, Q., F.A. Heinsch, M. Zhao, and S.W. Running, 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment, 111: 519-536.
Mu, Q., F.A. Heinsch, M. Zhao, and S.W. Running, 2011b. Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sensing of Environment, 115: 1781-1800.
Mu, Q., M. Zhao, J.S. Kimball, N.G. McDowell, and S.W. Running, 2013. A Remotely Sensed Global Terrestrial Drought Severity Index, Bulletin of the American Meteorological Society, 94(1): 83-98.
Niu, S., M. Wu, Y. Han, J. Xia, L. Li, and S. Wan, 2008. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe, New Phytologist, 177(1): 209-219.
Niu, S., X. Xing, Z. Zhang, J. Xia, X. Zhou, B. Song, L. Li, and S. Wan, 2011. Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe, Global Change Biology, 17(2): 1073-1082.
Palmer, W., 1965. Meteorological drought, U.S. Department of Commerce Weather Bureau, Washington DC, U.S.
Ponce-Campos, G.E., M.S. Moran, A. Huete, Y. Zhang, C. Bresloff, T.E. Huxman, D. Eamus, D.D. Bosch, A.R. Buda, S.A. Gunter, T.H. Scalley, S.G. Kitchen, M.P. McClaran, W.H. McNab, D.S. Montoya, J.A. Morgan, D.P.C. Peters, E.J. Sadler, M.S. Seyfried, and P.J. Starks, 2013. Ecosystem resilience despite largescale altered hydroclimatic conditions, Nature, 494: 349-352.
Reichstein, M., J.D. Tenhunen, O. Roupsard, J.M. Ourcival, S. Rambal, F. Miglietta, A. Peressotti, M. Pecchiari, G. Tirone, and R. Valentini, 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses?, Global Change of Biology, 8(10): 999-1017.
Reichstein, M., P. Ciais, D. Papale, R. Valentini, S. Running, N. Viovy, W. Cramer, A. Granier, J. Ogee, V. Allard, M. Aubinet, C. Bernhofer, N. Buchmann, A. Barrara, T. Grunwald, M. Heimann, B. Heinesch, A. Knohl, W. Kutsch, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J.M. Ourcival, K. Pilegaard, J. Pumpanen, S. Rambal, S. Schaphoff, G. Seufert, J.F. Soussana, M.J. Sanz, T. Vesala, and M. Zhao, 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis, Global Change Biology, 13(3): 634-651.
Running, S.W., R.R. Nemani, F.A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004. A continuous satellite-derived measure of global terrestrial primary production, Bioscience, 54(6): 547-560.
Running, S.W. and M. Zhao, 2015. User's guide daily GPP and annual NPP (MOD17A2/A3) products NASA Earth observing system MODIS land algorithm, Version 3.0 for collection 6, University of Montana, Missoula, Montana, U.S.
Ryu, Y., D.D. Baldocchi, H. Kobayashi, C. Van Ingen, J. Li, T.A. Black, J. Beringer, E.V. Gorsel, A. Knohl, B.E. Law, and O. Roupsard, 2011. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales, Global Biogeochemistry Cycles, 25(4): 1-24.
Scanlon, T.M. and J.D. Albertson, 2004. Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa, Global Change Biology, 10(3): 329-341.
Sharma, B., D. Molden, and S. Cook, 2015. Water use efficiency in agriculture: Measurement, current situation and trends, In: Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D. (Eds.), Managing water and fertilizer for sustainable agricultural intensification, Paris, France, pp. 39-64.
Sur, C.Y. and M. Choi, 2013. Evaluating ecohydrological impacts of vegetation activities on climatological perspectives using MODIS gross primary productivity and evapotranspiration products at Korean regional flux network site, Remote Sensing, 5(5): 2534-2553.
Tang, X., H. Li, A.R. Desai, Z. Nagy, J. Luo, T.E. Kolb, A. Olioso, X. Xu, L. Yao, W. Kutsch, K. Pilegaard, B. Kostner, and C. Ammann, 2014. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?, Scientific Reports, 4: 7483.
Tian, H.Q., C. Lu, G. Chen, X. Xu, M. Liu, W. Ren, B. Tao, G. Sun, S. Pan, and J. Liu, 2011. Climate and land use controls over terrestrial water use efficiency in monsoon Asia, Ecohydrology, 4(2): 322-340.
Thornthwaite, C., 1948. An Approach toward a Rational Classification of Climate, Geographical Review, 38(1): 55-94.
Vicente-Serrano, S.M., S. Begueria, and J.I. Lopez-Moreno, 2010. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, Journal of Climate, 23: 1696-1718.
Wang, J., G. Yu, Q. Fang, D. Jiang, H. Qi, and Q. Wang, 2008. Responses of water use efficiency of 9 plant species to light and CO2 and their modeling, Acta Ecologica Sinica, 28(2): 525-533.
Willmott, C.J. and K. Matsuura, 2001. Terrestrial air temperature and precipitation: Monthly and annual time series (1950-1999) (version 1.02), Center for Climate Research, University of Delaware, Newark, New Jersey, U.S.
Woodward, F.I., 1987. Climate and Plant Distribution, Cambridge University Press, Cambridge, U.K.
Ye, X.C., Y.L. Li, X.H. Li, C.Y. Xu, and Q. Zhang, 2015. Investigation of the variability and implications of meteorological dry/wet conditions in the Poyang lake catchment, China, during the period 1960-2010, Advances in Meteorology, 2015: 928534.
Yu, G.R., X. Song, Q.F. Wang, Y. Liu, D. Guan, J. Yan, X. Sun, L. Zhang, and X. Wen, 2008. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables, New Phytologist, 177(4): 927-937.
Zhao, M., F.A. Heinsch, R.R. Nemani, and S.W. Running, 2005. Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sensing of Environment, 95(2): 164-176.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.