$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

This paper proposes an audio event classification method based on convolutional neural networks (CNNs). CNN has great advantages of distinguishing complex shapes of image. Proposed system uses the features of audio sound as an input image of CNN. Mel scale filter bank features are extracted from eac...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • There was a study on distinguishing four different events: traffic, music, crowd, and applause using an RBM [10]. In this study, RBM was trained so that the hidden layer could generate an output feature vector for an input feature vector; then the feed forward neural network (FFNN) was configured for the highest output layer so that the sound event could be produced. DNNs using RBM were evaluated together with SVM and GMM, and it was found that RBM had better classification performance than GMM and SVM.
  • In this study, a CNN-based audio event classifier was proposed and its performance was verified through experimentation. Proposed system used the features of audio sound as an input image of CNN.

대상 데이터

  • Tagging results show that a total of 160 audio events exist. Among them, 10 audio events, which belong to the events selected in Table 1 and contain enough quantity to be used as training data, are selected, and the corresponding tagging results are selected as training data.
  • One-tenth of the training data is used as validation data. Test data consists of a total of 600 audio segments by selecting 20 segments-per-event from all the datasets. All the data are converted to 16 kHz sampling and 16 bit-mono.
  • The data corresponding to the list of the audio events in Table 1 were collected from four datasets: UrbanSound8K, BBC Sound FX, DCASE2016, FREESOUND.
  • To conduct audio event analysis in as many segments as possible, the output class of CNNs should match the sounds from video as much as possible. To analyze this, total 11 hours of youtube videos were collected and audio events are tagged by annotators. Afterwards, 30 events were selected in the order of highest occurrence.

이론/모형

  • However, as there are cases with various events, the event sequence was classified. After modeling each sound event by GMM, a 3-state hidden markov model (HMM) was used to classify the sound event sequence. While this model exhibits high performance when sound events appear in a sequence, it is difficult to collect training data with answer scripts.
  • Segment level accuracy indicates the segment level accuracy for 600 segments. Segment level classification tests were conducted by using two decision making methods: probability accumulation method and voting method. In the probability accumulation method, the event probability of an audio segment is calculated as the accumulation of frame level probabilities over all frames.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. K. Kim and H. Kim, "Storytelling Strategy of Visual-Image Contents base on Rhetoric Metaphors," Journal of Digital Content Society, vol. 14, no. 4, pp. 481-491, December, 2013. 

  2. L. Lu, H. Jiang and H. Zhang, "A robust audio classification and segmentation method," in Proc. of ACM International Conference on Multimedia, pp. 203-211, September 30-October 5, 2001. 

  3. M. Xu, N. Maddage, C. Xu, M. Kankanhalli and Q. Tian, "Creating audio keywords for event detection in soccer video," in Proc. of IEEE International Conference on Multimedia and Expo, pp.281-284, July 6-9, 2003. 

  4. W. Cheng, W. Chu and J. Wu, "Semantic context detection based on hierarchical audio models," in Proc. of ACM SIGMM International Workshop on Multimedia Information Retrieval, pp.109-115, November 7-7, 2003. 

  5. H. Lee, P. Pham, Y. Largman and Y. Ng, "Unsupervised feature learning for audio classification using convolutional deep belief networks," in Proc. of Advances in Neural Information Processing Systems, pp.1096-1104, December 7-10, 2009. 

  6. Y. Bengio and Y. LeCun, "Large-scale Kernel Machines," MIT Press, 2007. 

  7. J. Portelo, M. Bugalho, I. Trancoso, J. Neto, A. Abad and A. Serralheiro, "Non-speech audio event detection," in Proc. of Internationa Conference on Acoustics, Speech and Signal Processing, pp.1973-1976, April 19-24, 2009. 

  8. L. Ballan, A. Bazzica and M. Bertini, A. Bimbo, and G. Serra, "Deep networks for audio event classification in soccer videos," in Proc. of International Conference on Multimedia and Expo, pp.474-477, June 28-3, 2009. 

  9. T. Heittola, A. Mesaros, A. Eronen and T. Virtanen, "Context-dependent sound event detection," EURASIP Journal on Audio, Speech, and Music Processing, vol.1, pp.1-13, January, 2013. 

  10. K. Zvi and T. Orith, "Audio event classification using deep neural networks," in Proc. of Interspeech, pp.1482-1486, August 25-29, 2013. 

  11. S. Downie, et al., "The Music Information Retrieval Evaluation eXchange: Some observations and insights," Advances in Music Information Retrieval, pp. 93-115, 2010. 

  12. R. Malkin, "Multimodal Technologies for Perception of Humans," Springer, pp. 323-330, 2007. 

  13. F. Smeaton, et al., "Evaluation campaigns and TRECVid," in Proc. of ACM International Workshop on Multimedia Information Retrieval, pp. 321-330, 2006. 

  14. E. Vincent, et al., "The signal separation evaluation campaign (2007-2010): Achievements and remaining challenges," Signal Processing, vol. 82, no. 8, pp. 1928-1936, 2012. 

  15. H. Larochelle, et al., "An empirical evaluation of deep architectures on problems with many factors of variation," in Proc. of International Conference on Machine Learning, pp.473-480, 2007. 

  16. M. Lim and J. Kim, "Audio Event Classification Using Deep Neural Networks," Phonetics and Speech Sciences, vol. 7, no. 4, pp.27-33, January, 2015. 

  17. J. Salamon, C. Jacoby and J. Bello, "A dataset and taxonomy for urban sound research," in Proc. of ACM International Conference on Multimedia, pp.1041-1044, November 3-7, 2014. 

  18. M. Slaney, "Semantic-audio retrieval," in Proc. of International Conference on Acoustics, Speech and Signal Processing, pp.1408-1411, May 13-17, 2002. 

  19. A. Mesaros, T. Heittola, and T. Virtanen, "TUT database for acoustic scene classification and sound event detection," in Proc. of 24th European Signal Processing Conference, pp. 1128-1132, 2016. 

  20. S. Young, G. Evermann, M. Gales and P. Woodland, "The HTK book (for HTK version 3.4)," Entropic Cambridge Research Laboratory, 2006. 

  21. M. Abadi, A. Agarwal, et al, "Tensorflow: Large-scale machine learning on heterogeneous distributed systems," 2016, Preprint at. 

  22. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp.436-444, May, 2015. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로