$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전염병 구획 모형에 대한 시스템다이내믹스 접근법: 국내 MERS 전염 SEIR 모형의 해석 및 변환
System Dynamics Approach to Epidemic Compartment Model: Translating SEIR Model for MERS Transmission in South Korea 원문보기

디지털융복합연구 = Journal of digital convergence, v.16 no.7, 2018년, pp.259 - 265  

정재운 (동아대학교 경영정보학과)

초록
AI-Helper 아이콘AI-Helper

수학모형의 한 유형인 구획모형은 전염병의 확산처럼 순차적인 이벤트나 프로세스로 구성된 동적 시스템의 변화를 분석하는 데 폭넓게 활용되어 왔다. 구획모형은 상자와 화살표로 표현되는 구획과 구획 간 관계로 구성된다. 이러한 원리는 stock과 flow로 구성되는 시스템다이내믹스(SD)의 모델링 원리와 비슷하다. 두 모형 모두 미분방정식을 이용하여 구조화된다. 이와 같은 두 모형 간 변환 가능성을 이용하여 국내 MERS 전염의 특징을 분석한 최근 연구의 SEIR 참조모형을 SD 관점에서 해석 변환한다. 변환된 SEIR 모형(Model 2)은 참조모형(Model 1)의 재현 결과와 비교하여 동일한 시뮬레이션 결과를 나타내었다. 본 연구는 전염병 구획모형의 구축에 도식과 미분방정식을 이용한 SD 방법론의 활용에 대한 인사이트를 제공하며, 변환된 SD 모형은 다른 전염병을 위한 참조모형으로 활용 가능하다.

Abstract AI-Helper 아이콘AI-Helper

Compartment models, a type of mathematical model, have been widely applied to characterize the changes in a dynamic system with sequential events or processes, such as the spread of an epidemic disease. A compartment model comprises compartments, and the relations between compartments are depicted a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • This study aimed to translate an epidemic compartment model to an SD model using the sharable differential equations and schematic elements of compartment and SD simulation models. To facilitate procedural verification in terms of schematization and differential equations, this study employed the reference SEIR model produced by a recent study concerning MERS spread in South Korea.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. C. Cobelli, A. Lepschy, G. Romanin Jacur & U. Viaro. (1986). On the Relationship Between Forrester's Schematics and Compartmnental Graphs, IEEE Transactions on Systems, Man, and Cybernetics, 16(5), 723-726. DOI: 10.1109/TSMC.1986.289316 

  2. M. M. Blomhoj, T. H. Kjeldsen & J. Ottesen. (2018). Compartment Models. NCSU(Online). http://www4.ncsu.edu/-msolufse/Compartmentmodels.pdf 

  3. E. Eriksson. (1971). Compartment Models and Reservoir Theory, Annual Review of Ecology and Systematics, 2(1), 67-84. DOI: 10.1146/annurev.es.02.110171.000435 

  4. J. D. Sterman. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. Boston: McGraw-Hill. 

  5. M. Kljajiae, A. Skraba & I. Bernik. (1999, July). System Dynamics and Decision Support in Complex Systems, The 17th International Conference of the System Dynamics Society and the 5th Australian and New Zealand Systems Conference. (paper ID 183). Wellington: System Dynamics Society. 

  6. W. O. Kermack & A. G. McKendrick. (1927, August). A Contribution to the Mathematical Theory of Epidemics, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), (pp. 700-721). London: Royal Society. 

  7. W. O. Kermack & A. G. McKendrick. (1932, October). Contributions to the Mathematical Theory of Epidemics II. The Problem of Endemicity, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 138(834), (pp.55-83). London: Royal Society. 

  8. W. O. Kermack & A. G. McKendrick. (1933). Contributions to the Mathematical Theory of Epidemics. III. Further Studies of the Problem of Endemicity. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 141(843), (pp.94-112). London: Royal Society. 

  9. F. Brauer. (2005). The Kermack-McKendrick epidemic model revisited, Mathematical Biosciences, 198, 119-131. DOI : 10.1016/j.mbs.2005.07.006 

  10. F. Brauer, P. V. D. Driessche & J. Wu(Eds). (2008). Mathematical Epidemiology. Berlin: Springer. 

  11. P. Yan & S. Liu. (2006). SEIR Epidemic Model with Delay, The ANZIAM Journal, 48(1), 119-134. DOI : 10.1017/S144618110000345X 

  12. J. B. Homer & G. B. Hirsch. (2006). System Dynamics Modeling for Public Health: Background and Opportunities, American Journal of Public Health, 96(3), 452-458. DOI : 10.2105/AJPH.2005.062059 

  13. T. Habtemariam, B. Tameru, D. Nganwa, G. Beyene, L. Ayanwale & V. Robnett. (2008). Epidemiologic Modeling of HIV/AIDS: Use of Computational Models to Study the Population Dynamics of the Disease to Assess Effective Intervention Strategies for Decision-making, Advances in Systems Science and Applications, 8(1), 35-39. 

  14. J. W. Forrester. (1969). Urban Dynamics, MA : Pegasus Communications. 

  15. A. Ahmed, J. Greensmith & U. Aickelin. (2012, May). Variance in System Dynamics and Agent Based Modelling Using the SIR Model of Infectious Disease, The 26th European Conference on Modelling and Simulation. (pp 9-15). Koblenz : ECMS. 

  16. R. Bagni, R. Berchi & P. Cariello. (2002). A Comparison of Simulation Models Applied to Epidemics, Journal of Artificial Societies and Social Simulation, 5(3). 

  17. N. Schiertz. (2002). Integrating System Dynamics and Agent-Based Modeling, The XX International Conference of the System Dynamics Society, Palermo : System Dynamics Society. 

  18. H. V. D. Parunak, R. Savit & R. L. Riolo. (1998). Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users' Guide, Lecture Notes in Computer Science, 1534, 10-25. DOI : https://doi.org/10.1007/10692956_2 

  19. C. M. Kwon & J. U. Jung. (2016). Applying discrete SEIR model to characterizing MERS spread in Korea, International Journal of Modeling, Simulation, and Scientific Computing, 7(4), Article ID 1643003. DOI : https://doi.org/10.1142/S1793962316430030 

  20. Centers for Disease Control and Prevention (Online) https://www.cdc.gov/coronavirus/mers/about/index.html 

  21. MERS (Middle East Respiratory Syndrome). (2015). Danish Health and Medicines Authority. 

  22. K. Kupferschmidt. (2015). 'Superspreading event' triggers MERS explosion in South Korea, Science(Online). http://www.sciencemag.org/news/2015/06/superspreading-event-triggers-mers-explosion-south-korea 

  23. S. H. Park, W. J. Kim, J. H. Yoo & J. H. Choi. (2016). Epidemiologic Parameters of the Middle East Respiratory Syndrome Outbreak in Korea, 2015, Infection & Chemotherapy, 48(2), 108-117. DOI : http://dx.doi.org/10.3947/ic.2016.48.2.108 

  24. H. S. Nama, J. W. Park, M. Ki, M. Y. Yeon, J. Kim & S. W. Kim. (2017). High Fatality Rates and Associated Factors in Two Hospital Outbreaks of MERS in Daejeon, the Republic of Korea, International Journal of Infectious Diseases, 58, 37-42. DOI : https://doi.org/10.1016/j.ijid.2017.02.008 

  25. The 2015 MERS Outbreak in the Republic of Korea: Learning from MERS. (2016). Korean Ministry of Health and Welfare. 

  26. M. Ki. (2015). 2015 MERS Outbreak in Korea: Hospital-to-Hospital Transmission, Epidemiology and Health, 37, ID 2015033. DOI : 10.4178/epih/e2015033 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로