$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 서포트 벡터 머신 기반 손동작 뇌전도 구분에 대한 연구
SVM-Based EEG Signal for Hand Gesture Classification 원문보기

韓國電磁波學會論文誌 = The journal of Korean Institute of Electromagnetic Engineering and Science, v.29 no.7, 2018년, pp.508 - 514  

홍석민 (국민대학교 보안-스마트전기자동차학과) ,  민창기 (국민대학교 보안-스마트전기자동차학과) ,  오하령 (국민대학교 보안-스마트전기자동차학과) ,  성영락 (국민대학교 보안-스마트전기자동차학과) ,  박준석 (국민대학교 보안-스마트전기자동차학과)

초록
AI-Helper 아이콘AI-Helper

뇌전도는 뇌 활동 시 발생하는 뇌 세포 간 상호작용으로 생성된 전기적 활동이며, 손동작 시 뇌 활동으로 인해 뇌전도가 발생한다. 본 연구에서는 16채널 뇌전도 측정 장비를 이용하여 손동작 전과 좌 혹은 우 손동작 시 발생되는 뇌전도를 측정하였으며, 측정된 데이터는 지도 학습 모델인 서포트 벡터 머신으로 분류하며, 서포트 벡터 머신의 학습 시간을 단축 위해 동작관련 정보 손실을 최소화하고, 뇌전도 정보를 축약할 수 있는 필터링을 통한 특징 추출과 벡터 차원 축소 기법을 제안한다. 분류 결과, 전두엽 부위의 전극에서 손동작 전 상태-손동작사이에서 평균 72.7 %의 정확도로 분류되었다.

Abstract AI-Helper 아이콘AI-Helper

An electroencephalogram (EEG) evaluates the electrical activity generated by brain cell interactions that occur during brain activity, and an EEG can evaluate the brain activity caused by hand movement. In this study, a 16-channel EEG was used to measure the EEG generated before and after hand movem...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 손동작 시 발생하는 뇌전도를 측정하여 손동작을 하지 않는 상태의 뇌전도와 구분하기 위해 측정된 데이터를 서포트 벡터 머신으로 학습시켜 분류한다. 학습 전 분류 시간을 단축하고 효율을 높이기 위해 측정된 뇌전도 데이터는 특징 추출과 평균화를 통한 데이터 벡터의 차원을 축소하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
뇌전도란? 뇌전도는 뇌 활동 시 발생하는 뇌 세포 간 상호작용으로 생성된 전기적 활동이며, 손동작 시 뇌 활동으로 인해 뇌전도가 발생한다. 본 연구에서는 16채널 뇌전도 측정 장비를 이용하여 손동작 전과 좌 혹은 우 손동작 시 발생되는 뇌전도를 측정하였으며, 측정된 데이터는 지도 학습 모델인 서포트 벡터 머신으로 분류하며, 서포트 벡터 머신의 학습 시간을 단축 위해 동작관련 정보 손실을 최소화하고, 뇌전도 정보를 축약할 수 있는 필터링을 통한 특징 추출과 벡터 차원 축소 기법을 제안한다.
뇌전도는 어떻게 발생하는가? 뇌전도는 뇌 활동 시 발생하는 뇌 세포 간 상호작용으로 생성된 전기적 활동이며, 손동작 시 뇌 활동으로 인해 뇌전도가 발생한다. 본 연구에서는 16채널 뇌전도 측정 장비를 이용하여 손동작 전과 좌 혹은 우 손동작 시 발생되는 뇌전도를 측정하였으며, 측정된 데이터는 지도 학습 모델인 서포트 벡터 머신으로 분류하며, 서포트 벡터 머신의 학습 시간을 단축 위해 동작관련 정보 손실을 최소화하고, 뇌전도 정보를 축약할 수 있는 필터링을 통한 특징 추출과 벡터 차원 축소 기법을 제안한다.
비접촉 동작 제어 방식의 한계는 무엇인가? 최근 인공지능 스피커, 동작인식이 가능한 제품들이출시하면서 비접촉 동작 제어 방식에 대한 다양한 연구가 진행되고 있다[1]. 하지만 이러한 비접촉 제어방식은 언어나 신체동작 감지를 위해 명령을 센서가 감지해야만 한다. 이러한 한계를 극복하고 접근성을 높일 수 있는 방식으로 기존 음성, 동작 등의 생체신호 대신 뇌전도(electroence- phalogram: EEG)를 이용한 기술이 주목 받고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (11)

  1. H. Gunes, M. Piccardi, "Bi-modal emotion recognition from expressive face and body gestures," Journal of Network and Computer Applications, vol. 30, no. 4, pp. 1334-1345, 2007. 

  2. E. S. Nurse, P. J. Karoly, D. B. Grayden, and D. R. Freestone, "A generalizable brain-computer interface(BCI) using machine learning for feature discovery," PLoS ONE, vol. 10, no. 6, 2015. 

  3. E. Yavuz, O. Aydemir, "Classification of EEG based BCI signals imagined hand closing and opening," in 2017 40th International Conference on Telecommunications and Signal Processing(TSP), Barcelona, 2017, pp. 425-428. 

  4. A. F. A. Jais, W. Mansor, K. Y. Lee, and W. F. H. Fauzi, "Motor imagery EEG analysis for home appliance control," in 2017 IEEE 13th International Colloquium on Signal Processing & Its Applications(CSPA), Batu Feringgi, 2017, pp. 314-317. 

  5. A. Van Cott, R. P. Brenner, "Technical advantage of digital EEG," Journal of Clinical Neurophysiology, vol. 15, no. 6, pp. 464-475, 1998. 

  6. G. Pfurtscheller, F. H. Lopes da Silva, "Eventrelated EEG/MEG synchronization and desynchronization: Basic principles," Clinical Neurophysiology, vol. 110, no. 11, pp. 1842-1857, Nov. 1999. 

  7. 김정환, 김현태, 박상은, 이정환, 김경섭, "다중레이트 디지털 필터 설계 및 심전도 신호의 기저선 변동 및 전원 잡음 제거," 전기학회논문지, 63(4), pp. 551-558, 2014년. 

  8. W. Ting, Y. Guo-zheng, Y. Bang-hua, and S. Hong, "EEG feature extraction based on wavelet packet decomposition for brain computer interface," Measurement, vol. 41, no. 6, pp. 618-625, Jul. 2008. 

  9. V. K. Ingle, J. G. Proakis, MATLAB을 이용한 디지털 신호처리, CENGAGE Learning, p. 334, 2007. 

  10. S. Trope, D. Fize, and C. Marlot, "Speed of processing in the human visual system," Nature, vol. 381, no. 6582, pp. 520-522, Jun. 1996. 

  11. Y. Tian, Y. Shi, X. Chen, and W. Chen, "AUC maximizing support vector machines with feature selection," Procedia Computer Science, vol. 4, pp. 1691-1698, 2011. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로