$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 미국의 초미세먼지 관리 제도 검토
Review of Particulate Matter Management in United States 원문보기

한국대기환경학회지 = Journal of Korean Society for Atmospheric Environment, v.34 no.4, 2018년, pp.588 - 609  

김병욱 (미국조지아주환경청) ,  김현철 (미국국립해양대기청) ,  김순태 (아주대학교 환경안전공학과)

Abstract AI-Helper 아이콘AI-Helper

The objective of this study is to provide information for improving the domestic particulate matter (PM) management. To achieve the study goal, we reviewed the past and current practice of PM management in the United States (US). Our review includes the assessment about the philosophical foundation ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
본 자료의 체계 부분은 미국의 대기관리 제도의 전반적인 현황을 검토하였는데 어떤 내용들을 포함하는가? 제시하는 내용은 미국의 청정대기법 (CAA; Clean Air Act)을 기반으로 관리 철학, 관리 체계, 측정, 배출량, 배출 허가권 및 준법감시, 국제 협력 등을 포함한다. 특히 관리 체계 부분에서는 대기환경기준 (NAA QS, National Ambient Air Quality Standards), 주 시행계획(SIP; State Implementation Plan, 이하 ‘시행계획’), 연방 시행계획 (FIP; Federal Implementation Plan)을 포함하는 미국의 대기관리 제도의 전반적인 현황을 검토하였다. 이를 위해 미국의PM2.
미국의 초창기 PM 10과 PM 2.5 관리는 어떤 관리에서부터 출발하였는가? 미국의 초창기 PM 10과 PM 2.5 관리는 1970년대 초반 총 부유분진(TSP; Total Suspended Particles) 관리에서 출발했다. 그러나 1990년 대대적인 청정대기법 개정과 함께 호흡기로 흡입되어 실제로 인체 위해성을 갖는 PM 10 , 그리고 PM2.
미 환경청의 대기환경기준은 크게 4단계로 나뉘어 진행되는데 각 단계의 내용은 어떠한가? 미 환경청은 원칙상 매 5년마다 대기환경기준을 신규 제정 또는 개정을 검토하며, 크게 4단계로 나누어 진행한다 (US EPA, 2014a). 첫번째 단계는 계획 (Planning) 단계로 자료 수집, 전문가 의견, 이해 관계자들의 의견을 고려하여 구체적인 로드맵을 제시한다. 두번째 단계는 종합적 과학평가 (ISA; Integrated Science Assessment)로 PM2.5 노출과 건강 위해성 간의 인과관계를 평가하는 작업이다. 이때 PM2.5 관련 대기화학 및 배출원 관련 자료도 함께 검토한다. 세번째 단계는 위해성/노출평가 (REA; Risk/Exposure Assessment)로 PM2.5 노출에 따른 조기사망률과 같은 정량적인 위해성 평가를 수행한다. 마지막 단계는 정책평가(PA; Policy Assessment)로 종합적 과학평가와 위해성/노출평가를 통해 밝혀진 과학적인 증거들을 고려하여 정책적 선택 사항들을 발굴하는 단계이다. 이 단계에서는 특히 대기환경법 과학자문위원회 (CASAC; Clean Air Scientific Advisory Committee)가미 환경청장에게 종합적 과학평가와 위해성/노출평가를 통해 얻어진 자료들을 총체적으로 고려하여 기존 대기환경기준이 충분한지, 개정이 필요한지 등을 ‘조언’한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (77)

  1. Air Pollution Training Institute (APTI) (2004) Preparation of Fine Particulate Emission Inventories. Research Triangle Park, NC. 

  2. Appel, K.W., Napelenok, S.L., Foley, K.M., Pye, H.O., Hogrefe, C., Luecken, D.J., Bash, J.O., Roselle, S.J., Pleim, J.E., Foroutan, H. (2017) Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geoscientific Model Development, 10(4), 1703-1732. 

  3. Appel, K.W., Pouliot, G.A., Simon, H., Sarwar, G., Pye, H.O.T., Napelenok, S.L., Akhtar, F., Roselle, S.J. (2013) Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geoscientific Model Development, 6(4), 883-899. https://doi.org/10.5194/gmd-6-883-2013 

  4. Byun, D., Schere, K.L. (2006) Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Applied Mechanics Reviews, 59(2), 51-77. https://doi.org/10.1115/1.2128636 

  5. Chatani, S., Yamaji, K., Sakurai, T., Itahashi, S., Shimadera, H., Kitayama, K., Hayami, H. (2018) Overview of Model Inter-Comparison in Japan's Study for Reference Air Quality Modeling (J-STREAM), Atmosphere, 9(1), 19. doi:10.3390/atmos9010019 

  6. Chow, J.C., Watson, J.G., Chen, L.-W.A., Arnott, W.P., Moosmuller, H., Fung, K. (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environmental Science & Technology, 38(16), 4414-4422. 

  7. Chow, J.C., Watson, J.G., Chen, L.-W.A., Rice, J., Frank, N.H. (2010) Quantification of $PM_{2.5}$ organic carbon sampling artifacts in US networks, Atmospheric Chemistry and Physics, 10(12), 5223-5239. https://doi.org/10.5194/acp-10-5223-2010 

  8. Clappier, A., Belis, C.A., Pernigotti, D., Thunis, P. (2017) Source apportionment and sensitivity analysis: two methodologies with two different purposes, Geoscientific Model Development, 10(11), 4245-4256. https://doi.org/10.5194/gmd-10-4245-2017 

  9. Cohan, D.S., Boylan, J.W., Marmur, A., Khan, M.N. (2007) An Integrated Framework for Multipollutant Air Quality Management and Its Application in Georgia, Environmental Management, 40(4), 545-554. https://doi.org/10.1007/s00267-006-0228-4 

  10. Dillner, A. (2016) Recent Changes to the IMPROVE and CSN Organic Carbon Artifact Adjustment Method. https://www.epa.gov/sites/production/files/2016-10/documents/recent_changes_to_the_improve.pdf (accessed 2018) 

  11. Environmental Council of the States (ECOS) (2016) State Delegation of Environmental Acts. https://www.ecos.org/wp-content/uploads/2016/02/February-2016-Green-Report.doc (accessed 2018). 

  12. Galvis, B., Bergin, Michael, Boylan, J., Huang, Y., Bergin, Michelle, Russell, A.G. (2015) Air quality impacts and health-benefit valuation of a low-emission technology for rail yard locomotives in Atlanta Georgia, Science of The Total Environment, 533(15), 156-164. https://doi.org/10.1016/j.scitotenv.2015.06.064 

  13. Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., Li, J., Kang, J.-E., Huang, K., Dong, X., Zhuang, B., Li, S., Ge, B., Wu, Q., Cheng, Y., Wang, Y., Lee, H.-J., Kim, C.-H., Fu, J.S., Wang, T., Chin, M., Woo, J.-H., Zhang, Q., Wang, Z., Carmichael, G.R. (2018) Air quality and climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III) - Part 1: Overview and model evaluation, Atmospheric Chemistry and Physics, 18(7), 4859-4884. doi:10.5194/acp-18-4859-2018 

  14. Gong, B., Kim, J., Kim, H., Lee, S., Kim, H., Jo, J., Kim, J., Gang, D., Park, J.M., Hong, J. (2016) A Study on the Characteristics of Condensable Fine Particles in Flue Gas. Journal of Korean Society for Atmospheric Environment, 32(5), 501-512. doi:10.5572/kosae.2016.32.5.501. (in Korean with English abstract) 

  15. Hall, E.S., Kaushik, S.M., Vanderpool, R.W., Duvall, R.M., Beaver, M.R., Long, R.W., Solomon, P.A. (2014) Integrating sensor monitoring technology into the current air pollution regulatory support paradigm: Practical considerations, American Journal of Environmental Engineering, 4(6), 147-154. 

  16. Itahashi, S., Yamaji, K., Chatani, S., Hayami, H. (2018) Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway, Atmosphere, 9(4), 132. https://doi.org/10.3390/atmos9040132 

  17. Jeffries, H. (2003) How Well Do Quality Models Simulate Air Pollution Emissions & Corresponding Reductions Needed to Protect Health and the Environment?, Air Quality in Houston, Fall 2003 Seminar Series, Shell Center for Sustainability, Rice University, November 4, 2003 

  18. Jiang, B., Xia, D. (2017) Role identification of $NH_3$ in atmospheric secondary new particle formation in haze occurrence of China. Atmospheric Environment, 163, 107-117. doi:10.1016/j.atmosenv.2017.05.035 

  19. Karmel, P.E., FitzGibbon, T.N. (2002) $PM_{2.5}$ : Federal and California Regulation of Fine Particulate Air Pollution, California Environmental Law Reporter 18. 

  20. Khan, B., Hays, M.D., Geron, C., Jetter, J. (2012) Differences in the OC/EC Ratios that Characterize Ambient and Source Aerosols due to Thermal-Optical Analysis, Aerosol Science and Technology, 46(2), 127-137. https://doi.org/10.1080/02786826.2011.609194 

  21. Kim, S., Bae, C., Kim, B.U., Kim, H.C. (2017a) $PM_{2.5}$ Simulations for the Seoul Metropolitan Area: ( I ) Contributions of Precursor Emissions in the 2013 CAPSS Emissions Inventory, Journal of Korean Society for Atmospheric Environment, 33(2), 139-158. doi:10.5572/kosae.2017.33.2.139. (in Korean with English abstract) 

  22. Kim, S., Bae, C., Yoo, C., Kim, B.U., Kim, H.C., Moon, N. (2017b) $PM_{2.5}$ Simulations for the Seoul Metropolitan Area: (II) Estimation of Self-Contributions and Emissionto- $PM_{2.5}$ Conversion Rates for Each Source Category, Journal of Korean Society for Atmospheric Environment, 33(4), 377-392. doi:10.5572/kosae.2017.33.4.377. (in Korean with English abstract) 

  23. Koo, B., Knipping, E., Yarwood, G. (2014) 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmospheric Environment 95, 158-164. https://doi.org/10.1016/j.atmosenv.2014.06.031 

  24. Lee, I.H., Choi, D.S., Ko, M.J., Park, Y.-K. (2017) PM Management Methods Considering Condensable PM Emissions from Stationary Sources in Seoul and Incheon. Journal of Korean Society for Atmospheric Environment, 33(4), 319-325. doi:10.5572/kosae.2017.33.4.319. (in Korean with English abstract) 

  25. Lilley, K.A., Day, A. (2007) New Source Review Rulemakings & Court Decisions. http://www.lawseminars.com/materials/07AIRWA/Lilley%2009-26-07.pdf (accessed 2018). 

  26. Link, M.F., Kim, J., Park, G., Lee, T., Park, T., Babar, Z.B., Sung, K., Kim, P., Kang, S., Kim, J.S., Choi, Y., Son, J., Lim, H.-J., Farmer, D.K. (2017) Elevated production of $NH_4$ $NO_3$ from the photochemical processing of vehicle exhaust: Implications for air quality in the Seoul Metropolitan Region. Atmospheric Environment, 156, 95-101. doi:10.1016/j.atmosenv.2017.02.031 

  27. Long, C.M., Nascarella, M.A., Valberg, P.A. (2013) Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions, Environmental Pollution, 181, 271-286. https://doi.org/10.1016/j.envpol.2013.06.009 

  28. Meng, Z., Lin, W., Zhang, R., Han, Z., Jia, X. (2017) Summertime ambient ammonia and its effects on ammonium aerosol in urban Beijing, China. Science of The Total Environment, 579, 1521-1530. doi:10.1016/j.scitotenv.2016.11.159 

  29. Mills, A.D., Wiser, R.H., Seel, J. (2017) Power Plant Retirements: Trends and Possible Drivers. https://doi.org/10.2172/1411667 (accessed 2018). 

  30. Nolte, C.G., Appel, K.W., Kelly, J.T., Bhave, P.V., Fahey, K.M., Collett Jr, J.L., Zhang, L., Young, J.O. (2015) Evaluation of the Community Multiscale Air Quality (CMAQ) model v5. 0 against size-resolved measurements of inorganic particle composition across sites in North America, Geoscientific Model Development, 8(9), 2877-2892. https://doi.org/10.5194/gmd-8-2877-2015 

  31. Nopmongcol, U., Koo, B., Tai, E., Jung, J., Piyachaturawat, P., Emery, C., Yarwood, G., Pirovano, G., Mitsakou, C., Kallos, G. (2012) Modeling Europe with CAMx for the Air Quality Model Evaluation International Initiative (AQMEII). Atmospheric Environment, 53, 177-185. https://doi.org/10.1016/j.atmosenv.2011.11.023 

  32. North American Research Strategy for Tropospheric Ozone (NARSTO) (2004) Particulate Matter Science for Policy Makers: A NARSTO Assessment, Cambridge University Press, Cambridge, England. 

  33. Oreskes, N., Shrader-Frechette, K., Belitz, K. (1994) Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263(5147), 641-646. 

  34. Ramboll-Environ (2016) Comprehensive Air Quality Model with Extensions. http://www.camx.com/ (accessed 2016). 

  35. Rao, S.T., Galmarini, S., Puckett, K. (2011) Air Quality Model Evaluation International Initiative (AQMEII): Advancing the State of the Science in Regional Photochemical Modeling and Its Applications, Bulletin of the American Meteorological Society 92, 23-30. https://doi.org/10.1175/2010BAMS3069.1 

  36. Russell, A., Dennis, R. (2000) NARSTO critical review of photochemical models and modeling. Atmospheric Environment, 34(12-14), 2283-2324. 

  37. Stensvaag, J.M. (2006) Preventing Significant Deterioration Under the Clean Air Act: Baselines, Increments, and Ceilings-Part II, Environmental Law Reporter, 36, 10017-10046. 

  38. U.S. Energy Information Administration (US EIA) (2014) Almost all power plants that retired in the past decade were powered by fossil fuels. Today in Energy. https://www.eia.gov/todayinenergy/detail.php?id34452 (accessed 2018). 

  39. U.S. Environmental Protection Agency (US EPA) (2004) Map of Nonattainment Areas Fine Particle ( $PM_{2.5}$ ) Designations. https://www3.epa.gov/pmdesignations/1997standards/documents/final/nonattaingreen.htm (accessed 2017). 

  40. U.S. Environmental Protection Agency (US EPA) (2007a) Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, $PM_{2.5}$ , and Regional Haze (No. EPA-454/B-07-002). https://www3.epa.gov/scram001/guidance/guide/final-03-pm-rh-guidance.pdf (accessed 2018). 

  41. U.S. Environmental Protection Agency (US EPA) (2007b) Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NSR): Removal of Vacated Elements, 72 FR 32526. https://www.federalregister.gov/documents/2007/06/13/E7-11289/prevention-of-significant-deterioration-psd-andnonattainment-new-source-review-nsr-removal-of (accessed 2018). 

  42. U.S. Environmental Protection Agency (US EPA) (2008a) Ambient Air Monitoring Strategy for State, Local, and Tribal Air Agencies. Research Triangle Park, NC. https://www3.epa.gov/ttnamti1/files/ambient/monitorstrat/AAMS%20for%20SLTs%20%20-%20FINAL%20Dec%202008.pdf (accessed 2018). 

  43. U.S. Environmental Protection Agency (US EPA) (2008b) Air Emissions Reporting Requirements, 80 FR 8787. https://www.gpo.gov/fdsys/pkg/FR-2015-02-19/pdf/2015-03470.pdf (accessed 2018). 

  44. U.S. Environmental Protection Agency (US EPA) (2010) Field Evaluation of an Improved Method for Sampling and Analysis of Filterable and Condensable Particulate Matter, EPA-HQ-OAR-2008-0348. https://www3.epa.gov/ttnemc01/methods/preamble201a202.pdf (accessed 2018). 

  45. U.S. Environmental Protection Agency (US EPA) (2012) Regulatory Impact Analysis for the Proposed Revisions to the National Ambient Air Quality Standards for Particulate Matter (No. EPA-452/R-12-003). https://www3.epa.gov/ttnecas1/regdata/RIAs/finalria.pdf (accessed 2018). 

  46. U.S. Environmental Protection Agency (US EPA) (2013) U.S.-Mexico Border 2020 Program. https://www.epa.gov/border2020 (accessed 2017). 

  47. U.S. Environmental Protection Agency (US EPA) (2014a) Process of Reviewing the National Ambient Air Quality Standards https://www.epa.gov/criteria-air-pollutants/process-reviewing-national-ambient-air-quality-standards (accessed 2017). 

  48. U.S. Environmental Protection Agency (US EPA) (2014b) NAAQS Implementation Process. https://www.epa.gov/criteria-air-pollutants/naaqs-implementationprocess (accessed 2017). 

  49. U.S. Environmental Protection Agency (US EPA) (2014c) Collaboration with Mexico to Reduce Emissions from Ships. https://www.epa.gov/international-cooperation/collaboration-mexico-reduce-emissions-ships (accessed 2017). 

  50. U.S. Environmental Protection Agency (US EPA) (2015a) Benefits and Costs of the Clean Air Act 1990-2020, the Second Prospective Study. https://www.epa.gov/clean-air-act-overview/benefits-and-costs-cleanair-act-1990-2020-second-prospective-study (accessed 2018). 

  51. U.S. Environmental Protection Agency (US EPA) (2015b) SPECIATE Version 4.5 through 4.0. https://www.epa.gov/air-emissions-modeling/speciate-version-45-through-40 (accessed 2017). 

  52. U.S. Environmental Protection Agency (US EPA) (2015c) Prevention of Significant Deterioration Basic Information. https://www.epa.gov/nsr/prevention-significant-deterioration-basic-information (accessed 2018). 

  53. U.S. Environmental Protection Agency (US EPA) (2015d) Nonattainment NSR Basic Information https://www.epa.gov/nsr/nonattainment-nsr-basic-information (accessed 2018). 

  54. U.S. Environmental Protection Agency (US EPA) (2015e) Operating Permits Issued under Title V of the Clean Air Act https://www.epa.gov/title-v-operating-permits (accessed 2017). 

  55. U.S. Environmental Protection Agency (US EPA) (2015f ) U.S.-Canada Air Quality Agreement https://www.epa.gov/airmarkets/us-canada-air-quality-agreement (accessed 2017). 

  56. U.S. Environmental Protection Agency (US EPA) (2015g) NSR Regulatory Actions https://www.epa.gov/nsr/nsrregulatory-actions (accessed 2017). 

  57. U.S. Environmental Protection Agency (US EPA) (2016a) Particulate Matter ( $PM_{2.5}$ ) Trends. https://www.epa.gov/air-trends/particulate-matter-pm25-trends (accessed 2017). 

  58. U.S. Environmental Protection Agency (US EPA) (2016b) Table of Historical Particulate Matter (PM) National Ambient Air Quality Standards (NAAQS). https://www.epa.gov/pm-pollution/table-historical-particulatematter-pm-national-ambient-air-quality-standardsnaaqs (accessed 2017). 

  59. U.S. Environmental Protection Agency (US EPA) (2016c) Draft $PM_{2.5}$ Precursor Demonstration Guidance. https://www.epa.gov/pm-pollution/draft-pm25-precursordemonstration-guidance (accessed 2017). 

  60. U.S. Environmental Protection Agency (US EPA) (2016d) Particle Pollution Designations Guidance and Data. https://www.epa.gov/particle-pollution-designations/particle-pollution-designations-guidanceand-data (accessed 2017). 

  61. U.S. Environmental Protection Agency (US EPA) (2016e) $PM_{2.5}$ NAAQS Final SIP Requirements Rule. https://www.epa.gov/pm-pollution/pm25-naaqs-final-siprequirements-rule-july-2016 (accessed 2017). 

  62. U.S. Environmental Protection Agency (US EPA) (2016f) NCore Multipollutant Monitoring Network. https://www3.epa.gov/ttnamti1/ncore.html (accessed 2017). 

  63. U.S. Environmental Protection Agency (US EPA) (2016g) Compliance and Emissions Data Reporting Interface (CEDRI). https://www.epa.gov/electronic-reportingair-emissions/compliance-and-emissions-datareporting-interface-cedri (accessed 2017). 

  64. U.S. Environmental Protection Agency (US EPA) (2016h) E-Enterprise Combined Air Emissions Reporting (CAER). https://www.epa.gov/e-enterprise/e-enterprise-combined-air-emissions-reporting-caer (accessed 2017). 

  65. U.S. Environmental Protection Agency (US EPA) (2016i) Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and $PM_{2.5}$ under the PSD Permitting Program. https://www3.epa.gov/ttn/scram/guidance/guide/EPA454_R_16_006.pdf 

  66. U.S. Environmental Protection Agency (US EPA) (2016j) RACT/BACT/LAER Clearinghouse (RBLC) Basic Information. https://www.epa.gov/catc/ractbactlaer-clearing house-rblc-basic-information (accessed 2017). 

  67. U.S. Environmental Protection Agency (US EPA) (2016k) Cost Reports and Guidance for Air Pollution Regulations. https://www.epa.gov/economic-and-cost-analysisair-pollution-regulations/cost-reports-and-guidance-air-pollution (accessed 2018). 

  68. U.S. Environmental Protection Agency (US EPA) (2016l) Clean Air Act Stationary Source Compliance Monitoring Strategy. https://www.epa.gov/compliance/cleanair-act-stationary-source-compliance-monitoringstrategy (accessed 2018). 

  69. U.S. Environmental Protection Agency (US EPA) (2017a) Green Book, https://www3.epa.gov/airquality/greenbook/mappm25_2012.html (accessed 2017). 

  70. U.S. Environmental Protection Agency (US EPA) (2017b) Air Emissions Inventory Guidance for Implementation of Ozone and Particulate Matter NAAQS and Regional Haze Regulations. Research Triangle Park, NC. 

  71. U.S. Environmental Protection Agency (US EPA) (2017c) Factors Information REtrieval System (FIRE). https://cfpub.epa.gov/webfire/ (accessed 2017). 

  72. U.S. Environmental Protection Agency (US EPA) (2017d) Streamlining Permitting and Reducing Regulatory Burdens for Domestic Manufacturing, 82 FR 8667, https://www.gpo.gov/fdsys/pkg/FR-2017-01-30/pdf/2017-02044.pdf (accessed 2018). 

  73. U.S. Environmental Protection Agency (US EPA) (2017e) The Air Quality Model Evaluation International Initiative (AQMEII). https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId335518 (accessed 2017). 

  74. U.S. Environmental Protection Agency (US EPA) (2017f ) Revisions to the Guideline on Air Quality Models: Enhancements to the AERMOD Dispersion Modeling System and Incorporation of Approaches To Address Ozone and Fine Particulate Matter, 82 FR 5182, https://www.gpo.gov/fdsys/pkg/FR-2017-01-17/pdf/2016-31747.pdf (accessed 2018). 

  75. U.S. Environmental Protection Agency (US EPA) (2017g) Use of Photochemical Grid Models for Single-Source Ozone and secondary $PM_{2.5}$ impacts for Permit Program Related Assessments and for NAAQS Attainment Demonstrations for Ozone, $PM_{2.5}$ and Regional Haze. Research Triangle Park, NC. 

  76. Vautard, R., Moran, M.D., Solazzo, E., Gilliam, R.C., Matthias, V., Bianconi, R., Chemel, C., Ferreira, J., Geyer, B., Hansen, A.B., Jericevic, A., Prank, M., Segers, A., Silver, J.D., Werhahn, J., Wolke, R., Rao, S.T., Galmarini, S. (2012) Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations. Atmospheric Environment, 53, 15-37. https://doi.org/10.1016/j.atmosenv.2011.10.065 

  77. Whitman v. American Trucking Assns., Inc. (2001) 531 U.S. 457,121 S. Ct. 903, 149 L. Ed. 2d 1 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로