$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Flash와 Actionscript 3.0을 이용한 과학 시뮬레이션 앱의 디자인 및 효과 -중학교 과학 '물질의 구성' 단원을 중심으로-
Design and Effects of Science Simulation Applications Using Flash and ActionScript 3.0: In the Composition of Material Chapter in Middle School Science Textbooks 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.38 no.4, 2018년, pp.527 - 539  

이창윤 (서울대학교) ,  박철규 (서울대학교) ,  홍훈기 (서울대학교)

초록
AI-Helper 아이콘AI-Helper

탐구실험 활동의 대안으로 시뮬레이션의 도입이 제안되고 있으나, 과학교육의 특수성에 초점을 둔 디자인 사례는 드문 편이다. 본 연구는 과학 교과에 특화된 시뮬레이션의 디자인을 제안하고자 이것의 정의와 요건을 제안하였고, 사용성을 고려하기 위하여 디자인 가이드 라인을 설정하였다. 이어서 과학 시뮬레이션을 모바일기기용 앱의 형태로 개발하였다. 이때 개발도구는 교육적 활용성을 염두에 두고, 호환성, 기능성, 용이성, 모바일의 최적화를 고려하여 Flash와 Actionscript 3.0을 선택하였다. 실제로 과학 시뮬레이션 앱은 중학교 과학2 교과서 '물질의 구성' 단원을 기반으로 총 10차시 수업 중 7차시 탐구활동을 위해 모두 6개 제작되었다. 본 연구는 각 앱의 디자인으로부터 예상되는 탐구활동의 이점을 탐색하였고, 본문에 제시하였다. 또한, 과학 시뮬레이션 앱들을 경기도에 소재한 남녀공학 중학교의 2학년 학생 연구참여자 134명 중 처치반 67명 학생에게 적용하였고, 대조반 학생 67명과의 통계적 비교를 기반으로 교육적 효과를 조사하였다. 연구 결과, 처치반 학생들의 학업성취도, 정서적 검사도구의 점수는 모두 대조반 학생들보다 유의하게 높게 나타났다(p<.05). 사용성에 관한 설문조사에서도 처치반 학생들은 대부분 과학 시뮬레이션의 디자인에 대해 긍정적으로 응답하였다. 본 연구는 과학 교과의 디자인 사례연구로, 과학 시뮬레이션의 디자인에 관한 지평을 확장하는 데 기여할 것으로 전망된다.

Abstract AI-Helper 아이콘AI-Helper

Although a simulation is proposed as a candidate for alternative contents of inquiry activities, design cases focused on the characteristic of science education are rare. This study suggested the definition and requirements of science simulation to clarify science subject-specific design and set up ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
시뮬레이션에서 디자인의 효과는? 그들에 따르면, 디자인은 시뮬레이션의 개발과 적용에 대한 타당성(validity)과 신뢰성(reliability)에 영향을 주므로 연구의 관점에서 중요하다. 타당한 디자인은 시뮬레이션의 교육적 효과를 높이는 데 기여할 수 있으며, 신뢰로운 디자인은 일관된 교육적 효과를 이끌 수 있다(Jin, 2013; Quintana et al., 2009).
시뮬레이션의 기능은? , 2012). 시뮬레이션은 학습자의 조작에 따라 그에 상응하는 자료가 제시되는 상호작용적 콘텐츠로, 개인 교사(tutor)처럼 학습자에게 개별적으로 학습 도움을 제공할 수 있어 수준별 학습을 가능하게 해준다(Chen et al., 2014; Quintana et al.
화학에 관한 추상적인 특성으로 이해를 돕기위한 방법은? 화학에 관한 개념들은 대부분 입자 수준에서 적용되는 양자역학적 현상에 근거하기 때문에 추상적인 특성을 지니고 있으며, 이로 인해 학생들은 화학 내용의 이해를 어려워하곤 한다. 이에 기존의 화학 교과서는 학생들의 화학 개념의 이해를 돕기 위해 그들의 인지발달과 교육과정을 고려하여 분자 모델에 관한 삽화를 제공해왔다(Höffler & Leutner, 2007). 하지만, 삽화는 정지된 상태의 분자 모델만 나타내기 때문에, 학생들에게 종종 오개념을 유발하거나 과학에 대한 흥미를 감소시킬 수 있다(Kang, Kim, & Lee, 2011).
질의응답 정보가 도움이 되었나요?

참고문헌 (53)

  1. Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417-436. 

  2. Ahmed, S. & Parsons, D. (2013). Abductive science inquiry using mobile devices in the classroom. Computers & Education, 63, 62-72. 

  3. Ardito, C., Costabile, M. F., De Marsico, M., Lanzilotti, R., Levialdi, S., Roselli, T., & Rossano, V. (2006). An approach to usability evaluation of e-learning applications. Universal Access in the Information Society, 4(3), 270-283. 

  4. Balamuralithara, B. & Woods, P. C. (2009). Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education, 17(1), 108-118. 

  5. Blake, C. & Scanlon, E. (2007). Reconsidering simulations in science education at a distance: features of effective use. Journal of Computer Assisted Learning, 23(6), 491-502. 

  6. Chen, S., Chang, W. H., Lai, C. H., & Tsai, C. Y. (2014). A comparison of students’ approaches to inquiry, conceptual learning, and attitudes in simulation-based and microcomputer-based laboratories. Science Education, 98(5), 905-935. 

  7. Chiu, T. K. & Churchill, D. (2015). Exploring the characteristics of an optimal design of digital materials for concept learning in mathematics: Multimedia learning and variation theory. Computers & Education, 82, 280-291. 

  8. Cho, H., Kang, D., Kang, T., Kim, M., Kim, Y., Kim, H., Moon, T., Lee, Y., Lee, J., & Cho, Y. (2011). High school science textbook. Seoul: Chunjae Education. 

  9. Cober, R., Tan, E., Slotta, J., So, H. J., & Konings, K. D. (2015). Teachers as participatory designers: Two case studies with technology-enhanced learning environments. Instructional Science, 43(2), 203-228. 

  10. Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355-385. 

  11. Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34(3), 169-189. 

  12. Eryilmaz, E., Chiu, M. M., Thoms, B., Mary, J., & Kim, R. (2014). Design and evaluation of instructor-based and peer-oriented attention guidance functionalities in an open source anchored discussion system. Computers & Education, 71, 303-321. 

  13. Fraser, B. J. (1981). Test of science-related attitudes (TOSRA). Australian Council for Educational Research. 

  14. Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159-1176. 

  15. Gustafson, K. L. & Branch, R. M. (1997). Revisioning models of instructional development. Educational Technology Research and Development, 45(3), 73-89. 

  16. Han, Y. H., Jeun, E. S., & Paik, S. H. (2014). Analysis of scientific inquiry elements in middle school science textbooks, teachers cognition, and an experiment case. Journal of the Korean Association for Science Education, 34(4), 349-357. 

  17. Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., & Kaufman, J. (2015). Putting education in "educational" apps lessons from the science of learning. Psychological Science in the Public Interest, 16(1), 3-34. 

  18. Hoffler, T. N. & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17(6), 722-738. 

  19. Jin, S. H. (2013). Visual design guidelines for improving learning from dynamic and interactive digital text. Computers & Education, 63, 248-258. 

  20. Johnson, D. & Wiles, J. (2003). Effective affective user interface design in games. Ergonomics, 46(13-14), 1332-1345. 

  21. Kang, M., Kim, H. S., & Lee, J. (2011). The effects of flow and cognitive presence on learning outcomes in a middle school science class using web-based simulation. Journal of Educational Information and Media, 17(1), 39-61. 

  22. Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38(6), 523-550. 

  23. Kim, K. S., Lee, S. W., & Noh, T. H. (2009). The relationships among elementary school students' cognitive, affective, and behavioral characteristics related to science learning and their perceptions toward scientific and/or technological professions. Journal of Korean Elementary Science Education, 28(2), 121.131. 

  24. Kim, M. H. & Kim, Y. (2012). Preference and actuality for science laboratory and teaching environment of science teachers’ in primary and secondary school. Journal of the Korean Association for Science Education, 32(10), 1567-1579. 

  25. Kim, S. H., Kim, Y. B., Kang, S. J., Kim, H. C., Shin, J. H., Park, S. H., & Min, B. C. (2008). Korean education longitudinal study 2005 (IV). Seoul: Korean Educational Development Institute. 

  26. Kim, Y., Son, J., & Song, Y. (2010). Analysis of the biology major teachers' misconceptions on the pathway of image formation in eye vision. Biology Education, 38(2), 331-341. 

  27. Kim, Y. Y. & Chung, H. M. (2012). The development of scaffolding guidelines for instructors to promote students’ self-directed learning. Journal of Educational Studies, 43(1), 1-31. 

  28. Klein, J., Moon, Y., & Picard, R. W. (2002). This computer responds to user frustration: Theory, design, and results. Interacting with Computers, 14(2), 119-140. 

  29. Kort, B., Reilly, R., & Picard, R. W. (2001). An Affective Model of Interplay between Emotions and Learning: Reengineering Educational Pedagogy-Building a Learning Companion. In Proceedings IEEE International Conference on Advanced Learning Technologies (pp. 43-46). Madison, WI. USA. 

  30. Lai, C. H., Yang, J. C., Chen, F. C., Ho, C. W., & Chan, T. W. (2007). Affordances of mobile technologies for experiential learning: the interplay of technology and pedagogical practices. Journal of Computer Assisted Learning, 23(4), 326-337. 

  31. Lee, C. Y. (2015). The effects of smart applications in didactic instructions on inquiry activities : The development and application of smart applications (Unpublished master's thesis). Seoul National University, Seoul. 

  32. Lee, C. Y. & Hong, H. (2017). Development of a science simulation to support authentic observation in precipitation reactions. School Science Journal, 11(2), 236-245. 

  33. Lee, Y. M., Kang, M. H., Yoon, S. H., & Park, J. Y. (2016). Analysis of predicting variables of the 21st century skills in elementary smart-learning using smart-pads. The Journal of Elementary Education, 29(4), 201-226. 

  34. Libman, D. & Huang, L. (2013). Chemistry on the go: review of chemistry apps on smartphones. Journal of Chemical Education, 90(3), 320-325. 

  35. Lindgren, R. & Schwartz, D. L. (2009). Spatial learning and computer simulations in science. International Journal of Science Education, 31(3), 419-438. 

  36. Liu, H. C., Andre, T., & Greenbowe, T. (2008). The impact of learner’s prior knowledge on their use of chemistry computer simulations: A case study. Journal of Science Education and Technology, 17(5), 466-482. 

  37. Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52. 

  38. Oh, J. J. & Kang, G. (2016). History of Gravitational-wave Detection Experiments. New Phys.: Sae Mulli, 66, 264-271. 

  39. Park, H. J. (2013). A study of middle school science teachers' perceptions on science lessons with experiments. Journal of Science Education, 37(1), 79-86. 

  40. Park, J. (2017). An Analysis on the changes of achievement standards and inquiry activities in the 2015 revised national elementary school science curriculum. Journal of Korean Elementary Science Education, 36(1), 43-60. 

  41. Park, J. S. & Jung, K. M. (2010). Analyzing experiment illustrations and error in illustrations in high school chemistry 1 textbooks. Journal of the Korean Association for Science Education, 30(2), 181-191. 

  42. Park, S. K., Kang, M. J., & Kim, S. D. (2001). The development of web-based instruction program on oceanography unit and the analysis of its effects in Earth Science class. Journal of the Korean Association for Research in Science Education, 21(2), 264-278. 

  43. Plass, J. L., Milne, C., Homer, B. D., Schwartz, R. N., Hayward, E. O., Jordan, T., Verkuilen, J., Ng, F., Wang, Y., & Barrientos, J. (2012). Investigating the effectiveness of computer simulations for chemistry learning. Journal of Research in Science Teaching, 49(3), 394-419. 

  44. Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2009). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337-386. 

  45. Rutten, N., Van Joolingen, W. R., & Van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153. 

  46. Schutz, P. A. & Pekrun, R. E. (2007). Emotion in education. Boston: Elsevier Academic Press. 

  47. Smetana, L. K. & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370. 

  48. Trundle, K. C. & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088. 

  49. Um, E., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning. Journal of Educational Psychology, 104(2), 485. 

  50. Wang, J. Y., Wu, H. K., Chien, S. P., Hwang, F. K., & Hsu, Y. S. (2015). Designing applications for physics learning: Facilitating high school students’ conceptual understanding by using tablet pcs. Journal of Educational Computing Research, 51(4), 441-458. 

  51. Webb, M. E. (2005). Affordances of ICT in science learning: implications for an integrated pedagogy. International Journal of Science Education, 27(6), 705-735. 

  52. Yang, I. H., Jeong, J. W., Kim, Y. S., Kim, M. K., & Cho, H. J. (2006). Analyses of the aims of laboratory activity, interaction, and inquiry process within laboratory instruction in secondary school science. Journal of the Korean earth science society, 27(5), 509-520. 

  53. Zacharia, Z. (2003). Beliefs, attitudes, and intentions of science teachers regarding the educational use of computer simulations and inquiry-based experiments in physics. Journal of Research in Science Teaching, 40(8), 792-823. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로