$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

차세대 리튬이차전지를 위한 산화물 고체전해질의 연구동향
Research progress of oxide solid electrolytes for next-generation Li-ion batteries 원문보기

세라미스트 = Ceramist, v.21 no.4, 2018년, pp.349 - 365  

강병우 (포항공과대학교) ,  박희택 (포항공과대학교) ,  우승준 (포항공과대학교) ,  강민석 (포항공과대학교) ,  김아빈 (포항공과대학교)

Abstract AI-Helper 아이콘AI-Helper

Since the electrification of vehicles has been extended, solid-state batteries have been attracting a lot of interest because of their superior safety. Especially, polymer, sulfide, and oxide based materials are being studied as solid electrolytes, and each type of materials has advantaged and disad...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 전고체 리튬이온전지의 고체전해질은 고분자와 세라믹 전해질을 사용하는 경우로 나뉘며, 세라믹 전해질은 황화물계와 산화물계에 대한 연구가 주로 이루어지고 있다. 본 논문에서는 세라믹 고체전해질 중 산화물계 전해질에 대한 내용을 소개하고자 한다. 전고체 리튬이온전지가 전기화학 성능에 직접적인 영향을 끼치는 활물질이 아닌 전해질을 액체에서 고체(세라믹)로 대체한 시스템이지만 차세대 전지로 여겨지는 이유는 다음과 같다.
  • 본 논문에서는 현재 개발되고 있는 산화물계 고체전해 질의 특성과 전고체 전지 구동에 대해서 살펴보았다. 특히, 전고체 전지의 구동에 필요한 특성인 이온전도도, Li 금속과의 반응에 대해서 중점적으로 확인해 보았다.
  • 본 논문에서는 현재 개발되고 있는 산화물계 고체전해 질의 특성과 전고체 전지 구동에 대해서 살펴보았다. 특히, 전고체 전지의 구동에 필요한 특성인 이온전도도, Li 금속과의 반응에 대해서 중점적으로 확인해 보았다. (Table.
  • 산화물계 고체전해질은 여러 물질에 대한 화학적 안정성은 우수하지만, 황화물계 전해질에 비해 이온전도도가 낮고 고온 소결 처리가 필요하여 벌크형 전지 제작에 대한 연구가 아직 부족하고 상온에서 전지의 성능이 낮은 문제점이 있다. 하지만 산화물계 전해질을 이용한 전지는 이론적인 관점에서 황화물계 전해질 기반 전지보다 월등한 성능을 구현할 수 있기 때문에 본 논문에서는 산화물 고체전해질의 종류와, 해당 소재에서 이루어지는 이온전도도 향상 연구, 리튬 금속과 전해질과의 계면저항 감소 연구 및 산화물 기반 전고체전지의 구현 현황에 대해서 소개하고자 한다

가설 설정

  • 또한 고체전해질의 높은 탄성계수 (Young’s modulus)와 이동수 (transference number) 때문에 리튬 수지상(dendrite)이 이론적으로 억제될 수 있어 흑연 음극을 고용량인 리튬 금속으로 대체할 수 있다.1) 둘째, 패키징에 의한 에너지밀도 증가이다. 중대형 전지를 위해 셀을 패키징할 때, 액체전해질은 각각 셀을 모두 밀봉한 뒤 모듈과 팩으로 조립해야 하지만, 고체전해질은 적층만으로 여러 개의 셀을 조립한 뒤 밀봉할 수 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
전지의 안전성을 향상시키기 위해 필요한 연구는? 1) 중대형 에너지 저장장치의 구현을 위해서 현재보다 에너지 밀도, 가격, 안전성 등의 성능이 획기적으로 향상된 리튬이온전지의 개발이 필수적이다. 특히, 전지의 안전성을 향상시키기 위해서 인화성 용매를 사용하는 액체전해질을 고체전해질로 대체한 전고체 리튬이온 전지에 대한 연구가 활발히 이루어지고 있다.
셀 패키징 시 고체전해질의 장점은? 1) 둘째, 패키징에 의한 에너지밀도 증가이다. 중대형 전지를 위해 셀을 패키징할 때, 액체전해질은 각각 셀을 모두 밀봉한 뒤 모듈과 팩으로 조립해야 하지만, 고체전해질은 적층만으로 여러 개의 셀을 조립한 뒤 밀봉할 수 있다. 이러한 이유로 셀의 성능 향상 없이도 전지의 부피가 1/5로 감소하여 부피당 에너지 밀도를 향상시킬 수 있을 것으로 예측되고 있다.
도요타에서 개발하는 황화물 고체전해질의 단점은? 4) 도요타 (Toyata)사에서는 2010년 LiCoO2 양극, 황화물 고체전해질, 흑연 음극의 prototype 셀을 발표한 이후 상용화를 목표로 연구 개발을 진행 중이다. 하지만, 황화물계 고체전해질은 공기 중 산소와 수분과 반응하여 치명적인 독성 물질인 황화수소(H2S)를 만들 수 있고 산화물계인 양극 활물질과 접촉 시 부반응을 일으키기 때문에 밀봉과 계면 처리를 위한 공정비용이 높아질 수 있다. 또한, 황화물 전해질은 리튬 금속과 반응하기 때문에 음극으로써 고용량 리튬 금속을 사용할 수 없어 사용 가능한 에너지를 감소시킬 수 있다.4) 
질의응답 정보가 도움이 되었나요?

참고문헌 (70)

  1. C. Monroe, and J. Newman, "The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces." Journal of The Electrochemical Society 152 [2] A396-A404 (2005). 

  2. Toyota, https://www.toyota-europe.com/world-of-toyota/environmental-technology/next-generation-secondary-batteries (2012). 

  3. A. Manthiram, X. Yu, and S. Wang, "Lithium Battery Chemistries Enabled by Solid-State Electrolytes," Nature Reviews Materials, 2 [4], 16103 (2017). 

  4. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, "A Lithium Superionic Conductor," Nature materials 10 [9] 682-686 (2011). 

  5. R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type $Li_7La_3Zr_2O_{12}$ ," Angewandte Chemie International Edition 46 [41] 7778-7781 (2007). 

  6. J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, "Crystal Structure of Fast Lithium-ion-conducting Cubic $Li_7La_3Zr_2O_{12}$ ," Chemistry letters 40 [1]: 60-62 (2010). 

  7. J. Wolfenstine, J. L. Allen, J. Read, and J. Sakamoto, "Chemical Stability of Cubic $Li_7La_3Zr_2O_{12}$ with Molten Lithium at Elevated Temperature," Journal of Materials Science 48 [17] 5846-5851 (2013). 

  8. A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, and J. Sakamoto, "Surface Chemistry Mechanism of Ultra- Low Interfacial Resistance in the Solid-State Electrolyte $Li_7La_3Zr_2O_{12}$ ." Chemistry of Materials 29 [18] 7961-7968 (2017). 

  9. F. Chen, J. Li, Z. Huang, Y. Yang, Q. Shen, and L. Zhang. "Origin of the Phase Transition in Lithium Garnets," The Journal of Physical Chemistry C 122 [4] 1963-1972 (2018). 

  10. N. Bernstein, M. D. Johannes, and K. Hoang, "Origin of the Structural Phase Transition in $Li_7La_3Zr_2O_{12}$ ," Physical Review Letters 109 [20] 205702 (2012). 

  11. T. Thompson, J. Wolfenstine, J. L. Allen, M. Johannes, A. Huq, I. N. David, and J. Sakamoto, "Tetragonal vs. Cubic Phase Stability in Al-free Ta Doped $Li_7La_3Zr_2O_{12}$ (LLZO)," Journal of Materials Chemistry A 2 [33] 13431-13436 (2014). 

  12. J. L. Allen, J. Wolfenstine, E. Rangasamy, and J. Sakamoto, "Effect of Substitution (Ta, Al, Ga. on the Conductivity of $Li_7La_3Zr_2O_{12}$ ." Journal of Power Sources 206 315-319 (2012). 

  13. L. Buannic, B. Orayech, J. M. L. Del Amo, J. Carrasco, N. A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, and A. Llordes, "Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in $Li_{7}La_{3}Zr_{2}O_{12}$ Solid Electrolyte," Chemistry of Materials 29 [4] 1769-1778 (2017). 

  14. L. J. Miara, W. D. Richards, Y. E. Wang, and G. Ceder, "First-Principles Studies on Cation Dopants and Electrolyte $\mid$ Cathode Interphases for Lithium Garnets," Chemistry of Materials 27 [11] 4040-4047 (2015). 

  15. Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y. He, F. Kang, and B. Li, "Challenges and Perspectives of Garnet Solid Electrolytes for All Solid-state Lithium Batteries," Journal of Power Sources 389 120-13 (2018). 

  16. M. Wang, and J. Sakamoto, "Correlating the Interface Resistance and Surface Adhesion of the Li Metal-Solid Electrolyte Interface," Journal of Power Sources 377 7-11 (2018). 

  17. L. Cheng, E. J. Crumlin, W. Chen, R. Qiao, H. Hou, S. F. Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen and M. Doeff, "The Origin of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes," Physical Chemistry Chemical Physics 16 [34] 18294-18300 (2014). 

  18. X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, and L. Hu, "Negating Interfacial Impedance in Garnet-based Solid-state Li Metal Batteries," Nature materials 16 [5] 572 (2017). 

  19. W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C. F. Lin, Y. Mo, and E. D. Wachsman, and L. Hu, "Reducing Interfacial Resistance between Garnet Structured Solid State Electrolyte and Li Metal Anode by a Germanium Layer," Advanced Materials 29 [22] 1606042 (2017). 

  20. C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E. D. Wachsman, and L. Hu, "Continuous Plating/stripping Behavior of Solid-state Lithium Metal Anode in a 3D Ionconductive Framework," Proceedings of the National Academy of Sciences 115 [15] 3770-3775 (2018). 

  21. C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J. Dudney, and M. Chi. "Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via In Situ Electron Microscopy," Nano letters 16 [11] 7030-7036 (2016). 

  22. P. Canepa, J. A. Dawson, G. S. Gautam, J. M. Statham, S. C. Parker, and M. S. Islam. "Particle Morphology and Lithium Segregation to Surfaces of the $Li_7La_3Zr_2O_{12}$ Solid Electrolyte," Chemistry of Materials 30 [9] 3019-3027 (2018). 

  23. A. C. Luntz, J. Voss, and K. Reuter. "Interfacial Challenges in Solid-state Li Ion Batteries," Journal of Physical Chemistry Letters 6 [22] 4599-4604 (2015). 

  24. A. Aboulaich, R. Bouchet, G. Delaizir, V. Seznec, L. Tortet, M. Morcrette, P. Rozier, J. M. Tarascon, V. Viallet, and M. Dolle. "A New Approach to Develop Safe All Inorganic Monolithic Li Ion Batteries," Advanced Energy Materials 1 [2] 179-183 (2011). 

  25. Y. Zhu, X. He, and Y. Mo, "First Principles Study on Electrochemical and Chemical Stability of Solid Electrolyte-Electrode Interfaces in All-solid-state Li-ion Batteries." Journal of Materials Chemistry A 4 [9] 3253-3266 (2016). 

  26. F. Han, T. Gao, Y. Zhu, K. J. Gaskell, and C. Wang, "A Battery Made from a Single Material." Advanced Materials 27 [23] 3473-3483 (2015). 

  27. K. Park, B. C. Yu, J. W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, and J. B. Goodenough. "Electrochemical Nature of the Cathode Interface for a Solid-state Lithium-ion Battery: Interface Between $LiCoO_2\;and\;Garnet-Li_7La_3Zr_2O_{12}$ ," Chemistry of Materials 28 [21] 8051-8059 (2016). 

  28. T. Kato, T. Hamanak, K. Yamamoto ,T. Hirayam, F. Sagane, M. Motoyama, and Y. Iriyama, "In-situ $Li_7La_3Zr_2O_{12}/LiCoO_2$ Interface Modification for Advanced All-solid-state Battery." Journal of Power Sources 260 292-298 (2014). 

  29. Y. Ren, T. Liu, Y. Shen, Y. Lin, and C. W. Nan, "Chemical Compatibility between Garnet-like Solid State Electrolyte $Li_{6.75}La_3Zr_{1.75}Ta_{0.25}O_{12}$ and Major Commercial Lithium Battery Cathode Materials," Journal of Materiomics 2 [3] 256-264 (2016). 

  30. S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka, "Co-sinterable Lithium Garnet-type Oxide Electrolyte with Cathode for All-solid-state Lithium Ion Battery," Journal of Power Sources 265 40-44 (2014). 

  31. F. Han, J. Yue, C. Chen, N. Zhao, X. Fan, Z. Ma, T. Gao, F. Wang, X. Guo, and C. Wang, "Interphase Engineering Enabled All-Ceramic Lithium Battery," Joule 2 [3] 497-508 (2018). 

  32. Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, and X. Guo, "W-doped $Li_7La_3Zr_2O_{12}$ Ceramic Electrolytes for Solid State Li-ion Batteries," Electrochimica Acta 180 37-42 (2015). 

  33. M. Samiee, B. Radhakrishnan, Z. Rice, Z. Deng, Y. S. Meng, S. P. Ong, and J. Luo, "Divalent-doped $Na_3Zr_2Si_2PO_{12}$ Natrium Superionic Conductor: Improving the Ionic Conductivity via Simultaneously Optimizing the Phase and Chemistry of the Primary and Secondary Phases," Journal of Power Sources 347 229-237 (2017). 

  34. J. Kuwano, N. Sato, M. Kato, and K. Takano, "Ionic Conductivity of $LiM_2(PO_4)_3$ (MTi, Zr, Hf. and Related Compositions,", Solid State Ionics 70-71 332-336 (1994). 

  35. C. Delmas, A. Nadiri, and J. L. Soubeyroux, "The Nasicon-type Titanium Phosphates $ATi_2(PO_4)_3$ (ALi, Na. as Electrode Materials,", Solid State lonics 28-30 419-423 (1988). 

  36. Y. Zhang, K. Chen, Y. Shen, Y. Lin, and C. W. Nan., "Enhanced Lithium-ion Conductivity in a $LiZr_2(PO_4)_3$ Solid Electrolyte by Al doping,", Ceramics International 43 S598-S602 (2017). 

  37. H. Yamamoto, M. Tabuchi, T. Takeuchi, H. Kageyama, and O. Nakamura, "Ionic Conductivity Enhancement in $LiGe_2(PO_4)_3$ Solid Electrolyte,", Journal of Power Sources 68 [2] 397-401 (1997). 

  38. K. Arbi, J. M. Rojo, and J. Sanz, "Lithium Mobility in Titanium Based Nasicon $Li_{1+x}Ti_{21x}Al_{x}(PO_4)_3\;and\;LiTi_{21x}Zr_{x}(PO_4)_3$ Materials Followed by NMR and Impedance Spectroscopy," Journal of the European Ceramic Society 27 [13] 4215-4218 (2007). 

  39. H. Xu. S. Wang, H. Wilson, F. Zhao., and A. Manthiram, "Y-Doped NASICON-type $LiZr_2(PO_4)_3$ Solid Electrolytes for Lithium-Metal Batteries," Chemistry of Materials 29 [17] 7206-7212 (2017). 

  40. V. Ramar, S. Kumar, S. R. Sivakkumar, and P. Balaya, "NASICON-type $La^{3+}\;Substituted\;LiZr_2(PO_4)_3$ with Improved Ionic Conductivity as Solid Electrolyte," Electrochimica Acta 271 120-126 (2018). 

  41. Y. Saito, K. Ado, T. Asai, H. Kageyama, and O. Nakamura, "Grain-boundary Ionic Conductivity in Nominal $Li_{1+x}M_{x}Ti_{2-x}(PO_4)_3\;(M\;\;Sc^{3+}\;or\;Y^{3+}$ . and Their Zirconium Analogues," Journal of Materials Science Letters 11 [12] 888-890 (1992). 

  42. S. Kumar and P. Balaya, "Improved Ionic Conductivity in NASICON-type $Sr^{2+}\;Doped\;LiZr_2(PO_4)_3$ ," Solid State Ionics 296, 1-6 (2016). 

  43. Y. Noda, K. Nakano, M. Otake, R. Kobayashi, M. Kotobuki, L. Lu, and M. Nakayama, "Research Update: Ca Doping Effect on the Li-ion Conductivity in NASICON-type Solid Electrolyte $LiZr_2(PO_4)_3$ : A First-principles Molecular Dynamics Study," APL Materials 6 [6] 060702 (2018). 

  44. D. H. Kothari, and D. K. Kanchan, "Effect of Doping of Trivalent Cations $Ga^{3+},\;Sc^{3+},\;Y^{3+}\;in\;Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ (LATP. System on $Li^+$ Ion Conductivity," Physica B: Condensed Matter, 501, 90-94 (2016). 

  45. H. Chung, and B. Kang, "Increase in Grain Boundary Ionic Conductivity of $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ by Adding Excess Lithium," Solid State Ionics 263, 125-130 (2014). 

  46. H. Chung, and B. Kang, "Mechanical and Thermal Failure Induced by Contact between a $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ Solid Electrolyte and Li Metal in an All Solid-State Li Cell," Chemistry of Materials 29 [20] 8611-8619 (2017). 

  47. B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, and J. Xiao, "The Role of the Solid Electrolyte Interphase Layer in Preventing Li Dendrite Growth in solid-state Batteries," Energy & Environmental Science 11 [7] 1803-1810 (2018). 

  48. Y. Liu, C. Li, B. Li, H. Song, Z. Cheng, M. Chen, P. He, and H. Zhou, "Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries," Advanced Energy Materials 8 [16] 1702374 (2018). 

  49. Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K. R. Adair, R. Li, C. Zhang, J. Liu, L. Y. Kuo, Y. Hu, T. K. Sham, L. Zhang, R. Yang, S. Lu, X. Song, and X. Sun, "Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition," ACS Applied Materials & Interfaces 10 [37] 31240-31248 (2018). 

  50. H. E. Shinawi, A. Regoutz, D. J. Payne, E. J. Cussen, and S. A. Corr, "NASICON $LiM_2(PO_4)_3$ Electrolyte (MZr. and Electrode (MTi. Materials for All solidstate Li-ion batteries with High Total Conductivity and Low Interfacial Resistance," Journal of Materials Chemistry A 6 [13] 5296-5303 (2018). 

  51. Y. Meesala, C. Y. Chen, A. Jena, Y. K. Liao, S. F. Hu, H. Chang, and R. S. Liu, "All-Solid-State Li-Ion Battery Using $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_{4})_{3}$ As Electrolyte Without Polymer Interfacial Adhesion," The Journal of Physical Chemistry C 122 [26] 14383-14389 (2018). 

  52. W. Zhou, S. Wang, Y. Li, S. Xin, A. manthiram, and J. B. Goodenough, "Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte," Journal of the American Chemical Society 138 [30] 9385-9388 (2016). 

  53. Y. Deng, C. Eames, J. N. Chotard, F. Lalere, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier, and M. S. Islam, "Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in $Li_4SiO_4-Li_3PO_4$ Solid Electrolytes," Journal of the American Chemical Society 137 [28] 9136-9145 (2015). 

  54. A. Khorassani, G. Izquierdo and A. R. west, "The Solid Electrolyte System, $Li_3PO_4-Li_4SiO_4$ ," Materials Research Bulletin 16 [12] 1561-1567 (1981). 

  55. D. Wang, G. Zhong, Y. Li, Z. Gong, M. J. McDonald, J. X. Mi, R. Fu, Z. Shi, and Y. Yang, "Enhanced Ionic Conductivity of $Li_{3.5}Si_{0.5}P_{0.5}O_4$ with Addition of Lithium Borate," Solid State Ionics 283 109-114 (2015). 

  56. Y. Deng, C. Eames, B. Fleutot, R. David, J. N. Chotard, E. Suard, C. Masquelier, and M. S. Islam, "Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON. Solid Electrolytes through a Mixed Polyanion Effect," ACS Applied Materials & Interfaces 9 [8] 7050-7058 (2017). 

  57. S . Song, J. Lu, F. Zheng, H. M. Duong and L. Lu " A Facile Strategy to Achieve High Conduction and Excellent Chemical Stability of Lithium Solid Electrolytes," RSC Advances 5 [9] 6588-6594 (2015). 

  58. S. Song, Z. Dong, F. Deng and N. Hu, "Lithium superionic conductors $Li_{10}MP_2O_{12}$ (MGe, Si)," Functional Materials Letters 11 [2] 1850039 (2018). 

  59. J. F. Whitacre and W.C. West, "Crystalline $Li_3PO_4/Li_4SiO_4$ Solid Solutions as an Electrolyte for Film Batteries Using Sputtered Cathode Layers," Solid State Ionics 175 [1-4] 251-255 (2004). 

  60. L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, and J. Li, "Li Metal Coated with Amorphous $Li_3PO_4$ via Magnetron Sputtering for Stable and Long-cycle Life Lithium Metal Batteries," Journal of Power Sources 342 175-182 (2017). 

  61. M. Yashima, M. Itoh, Y. Inaguma and Y..Morii, "Crystal Structure and Diffusion Path in the Fast Lithium-ion Conductor $La_{0.62}Li_{0.16}TiO_3$ ," Journal of the American Chemical Society 127 [10] 3491-3495 (2005). 

  62. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, "High Ionic Conductivity in Lithium Lanthanum Titanate," Solid State Communication 86 [10] 689-693 (1993). 

  63. C. W. Ban, and G. M. Choi "The Effect of Sintering on the Grain Boundary Conductivity of Lithium Lanthanum Titanates," Solid State Ionics 140 [3-4] 285-292 (2001). 

  64. G. X. Wang, P. Yao, D. H. Bradhurst, S. X. Dou, and H. K. Liu, "Structure Characteristics and Lithium Ionic Conductivity of $La_{(0.57-2x/3)}Sr_xLi_{0.3}TiO_3$ Perovskites," Journal of Material Science 35 [17] 4289-4291 (2000). 

  65. V. Thangadurai, A. K. Shukla, and J. Gopalakrishnan, " $LiSr_{1.650.35}B_{1.3}B'_{1.7}O_9$ (B Ti, Zr; B' Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure," Chemistry of Materials 11 [3] 835-839 (1999). 

  66. K. Chen, M. Huang, Y. Shen, Y. Lin, and C. W. Nan, "Improving Ionic Conductivity of $Li_{0.35}La_{0.55}TiO_3$ Ceramics by Introducing $Li_7La_3Zr_2O_{12}$ Sol into the Precursor Powder," Solid State Ionics 235 8-13 (2013). 

  67. W. J. Kwon, H. Kim, K. N. Jung, W. Cho, S. H. Kim, J. W. Lee, and M. S. Park. "Enhanced $Li^+$ Conduction in Perovskite $Li_{3x}La_{2/3-x\;1/3-2x}TiO_3$ Solid-electrolytes via Microstructural Engineering," Journal of Materials Chemistry A 5 [13] 6257-6262. (2017). 

  68. C. Hua, X. Fang, Z. Wang, and L. Chen, "Lithium Storage in Perovskite Lithium Lanthanum Titanate," Electrochemistry Communications 32 5-8 (2013). 

  69. J. Yan, X. Liu, B. Li, J. Yu and B. Ding, "Mixed Ionic and Electronic Conductor for Li-Metal Anode Protection," Advanced Materials 30 [31] 1705105 (2018). 

  70. Y. Inaguma and M. Nakashima, "A Rechargeable Lithium-Air Battery Using a Lithium Ion-Conducting Lanthanum Lithium Titanate Ceramics as an Electrolyte Separator," Journal of Power Sources 228 250-255 (2013). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로