$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

홉의 주요 Phloroglucinol 및 Prenylated Flavonoid의 생물활성
Biological Activities of Phloroglucinols and Prenylated Flavonoids from Humuli Strobilus 원문보기

생약학회지, v.49 no.3, 2018년, pp.189 - 202  

김현정 (목포대학교 약학대학) ,  윤구 (목포대학교 약학대학) ,  조영창 (전남대학교 약학대학) ,  이익수 (전남대학교 약학대학) ,  강복윤 (전남대학교 약학대학)

Abstract AI-Helper 아이콘AI-Helper

Hop cones (Humuli Strobili) are the female inflorescences of hop plants (Humulus lupulus L.) belonging to the family Cannabaceae. They have been used as herbal remedies to treat mood and sleep disturbances, and mainly to add as a bittering ingredient in brewing process. Considerable interests on pha...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 6,8) 따라서 홉 추출물의 생물학적, 약리학적 활성에 대한 연구와 더불어 이를 매개하는 주요 활성 성분을 밝히기 위한 분석연구 역시 계속되고 있다. 본 논문에서는 홉의 구성성분으로 알려져 있는 phloroglucinol, terpene, 및 prenylated flavonoid 중에서 함량이 비교적 높은 주요 화합물과 특유의 생물활성으로 주목 받는 성분을 대상으로 최근까지의 연구를 통해 드러난 생물활성을 정리하였다. Table I에 나와있는 바와 같이 홉의 고미성분인 phloroglucinol계 화합물인 humulone과 lupulone은 주로 항암 및 항미생물 활성을 나타내고 있다.
  • 화합물을 중심으로 현재까지 보고된 약리활성 및 생물활성 연구내용을 종합하여 정리하였다.

가설 설정

  • 18) Lupulone은 인간 제대정맥 내피세포 (human umbilical vein endothelial cells, HUVEC)의 증식과 세포 이동에 관여하는 화학 주성(chemotaxis), Matrigel에서 신생 혈관형성을 억제하고, 생쥐에서 피부 아래에 이식된Matrigel 플러그에서 새로운 혈관형성을 감소시킨다. 19)Isoxanthohumol은 유방암 MDA-MB-231의 Matrigel에서의 혈관형성을 저해한다. 20) Humulone은 병아리 태아 융모막 (chorioallantoic membrane, CAM)에서 생체 내 혈관신생과 in vitro에서 혈관 내피 세포의 관 형성을 억제하고 내피 세포의 증식과 VEGF의 생성을 억제한다.
  • 암의 전이와 관련된 xanthohumol의 활성으로는 인간 유방암 세포주(MCF-7 및 T47-D)에서의 항침습 효과가 보고되었다. 22) 이와 같은 효과는 E-cadherin/catenin 복합체의 기능이 활성화되어 생체내의 침습이 억제된 것이다. 또한 xanthohumol에 의한 프로스타글란딘(prostaglandin, PG) E2 와 Cysteine X Cysteine (CXC) 케모카인 수용체 4 생산 억제와 세포 이동 억제의 상관성도 보고되었다.
  • Xanthohumol은 caspase를 활성화하고 골수유래 수지상 세포의 세포 사멸을 유도한다. 55) 이러한 xanthohumol에 의한 수지상 세포의 반응조절은 내재면역과적응성면역의 균형조절에 활용될 수 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
홉 추출물은 어디에 사용되는가? 1,2) 이 생약은 특유의 향취와 함께 거의 둥글거나 달걀형의 약간 찌그러진 솔방울 모양의 구과(毬果)의 형태를 지녔으며, 세부적으로는 얇은 막질의 여러 포엽(苞葉)이 겹쳐져 있는 형태로서 포엽의 아랫부분 에는 등색~등황색의 분비물을 가진 특유한 홉 선체(腺體)가관찰된다. 3) 현재 홉 추출물이 건위소화 또는 수면유도 및 수면유지를 목적으로 의약품에 배합되고 있으며, 대부분의 홉은 맥주 제조 시 특유의 풍미와 쓴맛을 위해 주원료로 배합되고 있다. 2,4)
홉은 무엇인가? 홉(hop, Humulus lupulus L.)은 삼과(Cannabaceae)에 속하는 유럽 원산의 여러해살이 암수딴그루의 덩굴성식물로, 그 성숙한 암꽃이 주로 의약적, 산업적 용도로 이용되고 있으며, 생약명은 기원식물과 같은 이름의 홉(Humuli Strobilus) 또는 홀포(忽布)라 이른다. 1,2) 이 생약은 특유의 향취와 함께 거의 둥글거나 달걀형의 약간 찌그러진 솔방울 모양의 구과(毬果)의 형태를 지녔으며, 세부적으로는 얇은 막질의 여러 포엽(苞葉)이 겹쳐져 있는 형태로서 포엽의 아랫부분 에는 등색~등황색의 분비물을 가진 특유한 홉 선체(腺體)가관찰된다.
홉의 효능은 무엇인가? 5,6) 마지막으로 비교적 최근에 이르러서 다양한 생물활성으로 연구자들의 이목을 끌고 있는prenylated flavonoid 및 그 유도체 성분이 있다. 특히, xanthohumol과 그 flavanone 이성질체인 isoxanthohumol 그리고 xanthohumol의 탈메틸화 flavanone 유도체인 6-prenylnaringenin 및 8-prenylnaringenin이 항암, 항산화, 항염증 및 식물성 에스트로겐(phytoestrogen) 활성을 나타냄이 보고되면서 큰 주목을 받고 있다(Fig. 1).
질의응답 정보가 도움이 되었나요?

참고문헌 (105)

  1. Bae, K. H. (2000) The medicinal plants of Korea, 71. Kyo-Hak Publishing Co. Ltd., Seoul. 

  2. Van Wyk, B. E. and Wink, M. (2004) Medicinal plants of the world, 172. Timber Press, London. 

  3. 식품의약품안전평가원 (2013) 한약재관능검사해설서, 716. 행정간행물등록번호 11-1470550-000343-01. 

  4. Heinrich, M., Barnes, J., Gibbons, S. and Williamson, E. M. (2012) Fundamentals of pharmacognosy and phytotherapy, 242. Elsevier, Amsterdam. 

  5. 생약학교재편찬위원회 (2018) 생약학 개정2판, 466-469. 동명사, 서울. 

  6. Van Cleemput, M., Cattoor, K., De Bosscher, K., Haegeman, G., De Keukeleire, D. and Heyerick, A. (2009) Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod. 72: 1220-1230. 

  7. Stevens, J. F. and Page, J. E. (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65: 1317-1330. 

  8. Zanoli, P. and Zavatti, M. (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116: 383-396. 

  9. Liu, M., Hansen, P. E., Wang, G., Qiu, L., Dong, J., Yin, H., Qian, Z., Yang, M. and Miao, J. (2015) Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 20: 754-779. 

  10. Kac, J., Plazar, J., Mlinaric, A., Zegura, B., Lah, T. T. and Filipic, M. (2008) Antimutagenicity of hops (Humulus lupulus L.): bioassay-directed fractionation and isolation of xanthohumol. Phytomedicine 15: 216-220. 

  11. Miranda, C. L., Yang, Y. H., Henderson, M. C., Stevens, J. F., Santana-Rios, G., Deinzer, M. L. and Buhler, D. R. (2000) Prenylflavonoids from hops inhibit the metabolic activation of the carcinogenic heterocyclic amine 2-amino-3-methylimidazo[ 4, 5-f]quinoline, mediated by cDNA-expressed human CYP1A2. Drug Metab. Dispos. 28: 1297-1302. 

  12. Henderson, M. C., Miranda, C. L., Stevens, J. F., Deinzer, M. L. and Buhler, D. R. (2000) In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 30: 235-251. 

  13. Dietz, B. M., Kang, Y. H., Liu, G., Eggler, A. L., Yao, P., Chadwick, L. R., Pauli, G. F., Farnsworth, N. R., Mesecar, A. D., Van Breemen, R. B. and Bolton, J. L. (2005) Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem. Res. Toxicol. 18: 1296-1305. 

  14. Gallo, C., Dallaglio, K., Bassani, B., Rossi, T., Rossello, A., Noonan, D. M., D'Uva, G., Bruno, A. and Albini, A. (2016) Hop derived flavonoid xanthohumol inhibits endothelial cell functions via AMPK activation. Oncotarget 7: 59917-59931. 

  15. Albini, A., Dell'Eva, R., Vene, R., Ferrari, N., Buhler, D. R. and Noonan, D. M. (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J. 20: 527-529. 

  16. Saito, K., Matsuo, Y., Imafuji, H., Okubo, T., Maeda, Y., Sato, T., Shamoto, T., Tsuboi, K., Morimoto, M., Takahashi, H., Ishiguro, H. and Takiguchi, S. (2018) Xanthohumol inhibits angiogenesis by suppressing nuclear factor- ${\kappa}B$ activation in pancreatic cancer. Cancer Sci. 109: 132-140. 

  17. Negrao, R., Incio, J., Lopes, R., Azevedo, I. and Soares, R. (2007) Evidence for the effects of xanthohumol in disrupting angiogenic, but not stable vessels. Int. J. Biomed. Sci. 3: 279-286. 

  18. Negrao, R., Duarte, D., Costa, R. and Soares, R. (2013) Isoxanthohumol modulates angiogenesis and inflammation via vascular endothelial growth factor receptor, tumor necrosis factor alpha and nuclear factor kappa B pathways. Biofactors 39: 608-622. 

  19. Siegel, L., Miternique-Grosse, A., Griffon, C., Klein-Soyer, C., Lobstein, A., Raul, F. and Stephan, D. (2008) Antiangiogenic properties of lupulone, a bitter acid of hop cones. Anticancer Res. 28: 289-294. 

  20. Serwe, A., Rudolph, K., Anke, T. and Erkel, G. (2012) Inhibition of TGF- ${\beta}$ signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Invest. New Drugs 30: 898-915. 

  21. Shimamura, M., Hazato, T., Ashino, H., Yamamoto, Y., Iwasaki, E., Tobe, H., Yamamoto, K. and Yamamoto, S. (2001) Inhibition of angiogenesis by humulone, a bitter acid from beer hop. Biochem. Biophys. Res. Commun. 289: 220-224. 

  22. Vanhoecke, B., Derycke, L., Van Marck, V., Depypere, H., De Keukeleire, D. and Bracke, M. (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int. J. Cancer 117: 889-895. 

  23. Jongthawin, J., Techasen, A., Loilome, W., Yongvanit, P. and Namwat, N. (2012) Anti-inflammatory agents suppress the prostaglandin E2 production and migration ability of cholangiocarcinoma cell lines. Asian Pac. J. Cancer Prev. 13: 47-51. 

  24. Wang, Y., Chen, Y., Wang, J., Chen, J., Aggarwal, B. B., Pang, X. and Liu, M. (2012) Xanthohumol, a prenylated chalcone derived from hops, suppresses cancer cell invasion through inhibiting the expression of CXCR4 chemokine receptor. Curr. Mol. Med. 12: 153-162. 

  25. Krajnovic, T., Kaluderovic, G. N., Wessjohann, L. A., Mijatovic, S. and Maksimovic-Ivanic, D. (2016) Versatile antitumor potential of isoxanthohumol: enhancement of paclitaxel activity in vivo. Pharmacol. Res. 105: 62-73. 

  26. Miranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J. and Yang, Y. H. (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem. Toxicol. 37: 271-285. 

  27. Yong, W. K., Ho, Y. F. and Malek, S. N. (2015) Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 nonsmall cell lung cancer cells. Pharmacogn. Mag. 11: S275-S283. 

  28. Yong, W. K. and Abd Malek, S. N. (2015) Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. Evid. Based Complement. Alternat. Med. 921306. 

  29. Zhao, X., Jiang, K., Liang, B. and Huang, X. (2016) Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF- ${\kappa}B$ /p53-apoptosis signaling pathway. Oncol. Rep. 35: 669-675. 

  30. Sun, Z., Zhou, C., Liu, F., Zhang, W., Chen, J., Pan, Y., Ma, L., Liu, Q., Du, Y., Yang, J. and Wang, Q. (2018) Inhibition of breast cancer cell survival by xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol. Lett. 15: 908-916. 

  31. Zhang, B., Chu, W., Wei, P., Liu, Y. and Wei, T. (2015) Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radic. Biol. Med. 89: 486-497. 

  32. Lust, S., Vanhoecke, B., Van Gele, M., Boelens, J., Van Melckebeke, H., Kaileh, M., Vanden Berghe, W., Haegeman, G., Philippe, J., Bracke, M. and Offner, F. (2009) Xanthohumol activates the proapoptotic arm of the unfolded protein response in chronic lymphocytic leukemia. Anticancer Res. 29: 3797-3805. 

  33. Mi, X., Wang, C., Sun, C., Chen, X., Huo, X., Zhang, Y., Li, G., Xu, B., Zhang, J., Xie, J., Wang, Z. and Li, J. (2017) Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway. Oncotarget 8: 31297-31304. 

  34. Shikata, Y., Yoshimaru, T., Komatsu, M., Katoh, H., Sato, R., Kanagaki, S., Okazaki, Y., Toyokuni, S., Tashiro, E., Ishikawa, S., Katagiri, T. and Imoto, M. (2017) Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor. Cancer Sci. 108: 785-794. 

  35. Lee, S. H., Kim, H. J., Lee, J. S., Lee, I. S. and Kang, B. Y. (2007) Inhibition of topoisomerase I activity and efflux drug transporters' expression by xanthohumol from hops. Arch. Pharm. Res. 30: 1435-1439. 

  36. Gasiorowska, J., Teisseyre, A., Uryga, A. and Michalak, K. (2015) Inhibition of Kv1.3 channels in human Jurkat T cells by xanthohumol and isoxanthohumol. J. Membr. Biol. 248: 705-711. 

  37. Delmulle, L., Bellahcene, A., Dhooge, W., Comhaire, F., Roelens, F., Huvaere, K,, Heyerick, A., Castronovo, V. and De Keukeleire, D. (2006) Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13: 732-734. 

  38. Busch, C., Noor, S., Leischner, C., Burkard, M., Lauer, U.M. and Venturelli, S. (2015) Anti-proliferative activity of hopderived prenylflavonoids against human cancer cell lines. Wien. Med. Wochenschr. 165: 258-261. 

  39. Ambroz, M., Bousova, I., Skarka, A., Hanusova, V., Kralova, V., Matouskova, P., Szotakova, B. and Skalova, L. (2015) The influence of sesquiterpenes from Myrica rubra on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. Molecules 20: 15343-15358. 

  40. Honma, Y., Tobe, H., Makishima, M., Yokoyama, A. and Okabe-Kado, J. (1998) Induction of differentiation of myelogenous leukemia cells by humulone, a bitter in the hop. Leuk. Res. 22: 605-610. 

  41. Tobe, H., Kubota, M., Yamaguchi, M., Kocha, T. and Aoyagi, T. (1997) Apoptosis to HL-60 by humulone. Biosci. Biotechnol. Biochem. 61: 1027-1029. 

  42. Lee, J. C., Kundu, J. K., Hwang, D. M., Na, H. K. and Surh, Y. J. (2007) Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-kappaB and AP-1: IkappaB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis 28: 1491-1498. 

  43. Lamy, V., Roussi, S., Chaabi, M., Gosse, F., Schall, N., Lobstein, A. and Raul, F. (2007) Chemopreventive effects of lupulone, a hop ${\beta}$ -acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 28: 1575-1581. 

  44. Lamy, V., Roussi, S., Chaabi, M., Gosse, F., Lobstein, A. and Raul, F. (2008) Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis 13: 1232-1242. 

  45. Lamy, V., Bousserouel, S., Gosse, F., Minker, C., Lobstein, A. and Raul, F. (2010) p53 Activates either survival or apoptotic signaling responses in lupulone-treated human colon adenocarcinoma cells and derived metastatic cells. Transl. Oncol. 3: 286-292. 

  46. Lamy, V., Bousserouel, S., Gosse, F., Minker, C., Lobstein, A. and Raul, F. (2011) Lupulone triggers p38 MAPK-controlled activation of p53 and of the TRAIL receptor apoptotic pathway in human colon cancer-derived metastatic cells. Oncol. Rep. 26: 109-114. 

  47. Bousserouel, S., Lamy, V., Gosse, F., Lobstein, A., Marescaux, J. and Raul, F. (2011) Early modulation of gene expression used as a biomarker for chemoprevention in a preclinical model of colon carcinogenesis. Pathol. Int. 61: 80-87. 

  48. Tan, K. W., Cooney, J., Jensen, D., Li, Y., Paxton, J. W., Birch, N. P. and Scheepens, A. (2014) Hop-derived prenylflavonoids are substrates and inhibitors of the efflux transporter breast cancer resistance protein (BCRP/ABCG2). Mol. Nutr. Food. Res. 58: 2099-2110. 

  49. Aderem, A. and Underhill, D. M. (1999) Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17: 593-623. 

  50. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787. 

  51. Schroder, K., Hertzog, P. J., Ravasi, T. and Hume, D. A. (2004) Interferon- ${\gamma}$ : an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75: 163-189. 

  52. Boehm, U., Klamp, T., Groot, M. and Howard, J. C. (1997) Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15: 749-795. 

  53. Cho, Y. C., Kim, H. J., Kim, Y. J., Lee, K. Y., Choi, H. J., Lee, I. S. and Kang, B. Y. (2008) Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPSactivated macrophages. Int. Immunopharmacol. 8: 567-573. 

  54. Cho, Y. C., You, S. K., Kim, H. J., Cho, C. W., Lee, I. S. and Kang, B. Y. (2010) Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int. Immunopharmacol. 10: 556-561. 

  55. Xuan, N. T., Shumilina, E., Gulbins, E., Gu, S., Gotz, F. and Lang, F. (2010) Triggering of dendritic cell apoptosis by xanthohumol. Mol. Nutr. Food Res. 54: S214-S224. 

  56. Choi, J. M., Kim, H. J., Lee, K. Y., Choi, H. J., Lee, I. S. and Kang, B. Y. (2009) Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity. Int. Immunopharmacol. 9: 103-107. 

  57. Gao, X., Deeb, D., Liu, Y., Gautam, S., Dulchavsky, S. A. and Gautam, S. C. (2009) Immunomodulatory activity of xanthohumol: inhibition of T cell proliferation, cell-mediated cytotoxicity and Th1 cytokine production through suppression of NF-kappaB. Immunopharmacol. Immunotoxicol. 31: 477-484. 

  58. Zhang, W., Pan, Y., Gou, P., Zhou, C., Ma, L., Liu, Q., Du, Y., Yang, J. and Wang, Q. (2018) Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model. Oncol. Rep. 39: 280-288. 

  59. Cho, J. M., Yun, S. M., Choi, Y. H., Heo, J., Kim, N. J., Kim, S. H. and Kim, E. H. (2017) Xanthohumol prevents dextran sulfate sodium-induced colitis via inhibition of $IKK{\beta}$ /NF- ${\kappa}B$ signaling in mice. Oncotarget 9: 866-880. 

  60. Dostalek, P., Karabin, M. and Jelinek, L. (2017) Hop phytochemicals and their potential role in metabolic syndrome prevention and therapy. Molecules 22: 1761. 

  61. Miranda, C. L., Elias, V. D., Hay, J. J., Choi, J., Reed, R. L. and Stevens, J. F. (2016) Xanthohumol improves dysfunctional glucose and lipid metabolism in diet-induced obese C57BL/6J mice. Arch. Biochem. Biophys. 599: 22-30. 

  62. Kiyofuji, A., Yui, K., Takahashi, K. and Osada, K. (2014) Effects of xanthohumol-rich hop extract on the differentiation of preadipocytes. J. Oleo. Sci. 63: 593-597. 

  63. Doddapattar, P., Radovic, B., Patankar, J. V., Obrowsky, S., Jandl, K., Nusshold, C., Kolb, D., Vujic, N., Doshi, L., Chandak, P. G., Goeritzer, M., Ahammer, H., Hoefler, G., Sattler, W. and Kratky, D. (2013) Xanthohumol ameliorates atherosclerotic plaque formation, hypercholesterolemia, and hepatic steatosis in ApoE-deficient mice. Mol. Nutr. Food Res. 57: 1718-1728. 

  64. Hirata, H., Yimin, Segawa, S., Ozaki, M., Kobayashi, N., Shigyo, T. and Chiba, H. (2012) Xanthohumol prevents atherosclerosis by reducing arterial cholesterol content via CETP and apolipoprotein E in CETP-transgenic mice. PLoS One 7: e49415. 

  65. Miranda, C. L., Johnson, L. A., de Montgolfier, O., Elias, V. D., Ullrich, L. S., Hay, J. J., Paraiso, I. L., Choi, J., Reed, R. L., Revel, J. S., Kioussi, C., Bobe, G., Iwaniec, U. T., Turner, R. T., Katzenellenbogen, B. S., Katzenellenbogen, J. A., Blakemore, P. R., Gombart, A. F., Maier, C. S., Raber, J. and Stevens, J. F. (2018) Non-estrogenic xanthohumol derivatives mitigate insulin resistance and cognitive impairment in highfat diet-induced obese mice. Sci. Rep. 8: 613. 

  66. Miyata, S., Inoue, J., Shimizu, M. and Sato, R. (2015) Xanthohumol improves diet-induced obesity and fatty liver by suppressing sterol regulatory element-binding protein (SREBP) activation. J. Biol. Chem. 290: 20565-20579. 

  67. Inoue, J., Miyata, S., Shimizu, M. and Sato, R. (2018) Isoxanthohumol stimulates ubiquitin-proteasome-dependent degradation of precursor forms of sterol regulatory elementbinding proteins. Biosci. Biotechnol. Biochem. 26: 1-8. 

  68. Lima-Fontes, M., Costa, R., Rodrigues, I. and Soares, R. (2017) Xanthohumol restores hepatic glucolipid metabolism balance in Type 1 diabetic Wistar rats. J. Agric. Food Chem. 65: 7433-7439. 

  69. Costa, R., Rodrigues, I., Guardao, L., Rocha-Rodrigues, S., Silva, C., Magalhaes, J., Ferreira-de-Almeida, M., Negrao, R. and Soares, R. (2017) Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice. J. Nutr. Biochem. 45: 39-47. 

  70. Seliger, J. M, Misuri, L., Maser, E. and Hintzpeter, J. (2018) The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J. Enzyme Inhib. Med. Chem. 33: 607-614. 

  71. Dorn, C., Kraus, B., Motyl, M., Weiss, T.S., Gehrig, M., Scholmerich, J., Heilmann, J. and Hellerbrand, C. (2010) Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol. Nutr. Food Res. 54: S205-S213. 

  72. Weiskirchen, R., Mahli, A., Weiskirchen, S. and Hellerbrand, C. (2015) The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front. Physiol. 6: 140. 

  73. Lou, S., Zheng, Y. M., Liu, S.L., Qiu, J., Han, Q., Li, N., Zhu, Q., Zhang, P., Yang, C. and Liu, Z. (2014) Inhibition of hepatitis C virus replication in vitro by xanthohumol, a natural product present in hops. Planta Med. 80: 171-176. 

  74. Philips, N., Samuel, M., Arena, R., Chen, Y. J., Conte, J., Natarajan, P., Haas, G. and Gonzalez, S. (2010) Direct inhibition of elastase and matrixmetalloproteinases and stimulation of biosynthesis of fibrillar collagens, elastin, and fibrillins by xanthohumol. J. Cosmet. Sci. 61: 125-132. 

  75. Suh, K. S., Chon, S. and Choi, E. M. (2018) Cytoprotective effects of xanthohumol against methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. J. Appl. Toxicol. 38: 180-192. 

  76. Fernandez-Garcia, C., Rancan, L., Paredes, S. D., Montero, C., de la Fuente, M., Vara, E. and Tresguerres, J. A. F. (2018) Xanthohumol exerts protective effects in liver alterations associated with aging. Eur. J. Nutr. doi: 10.1007/s00394-018-1657-6. 

  77. Rancan, L., Paredes, S. D., Garcia, I., Munoz, P., Garcia, C., Lopez de Hontanar G., de la Fuente, M., Vara, E. and Tresguerres, J. A. F. (2017) Protective effect of xanthohumol against age-related brain damage. J. Nutr. Biochem. 49: 133-140. 

  78. Lee, I. S., Lim, J., Gal, J., Kang, J. C., Kim, H. J., Kang, B. Y. and Choi, H. J. (2011) Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem. Int. 58: 153-160. 

  79. Orhan, I. E., Jedrejek, D., Senol, F. S., Salmas, R. E., Durdagi, S., Kowalska, I., Pecio, L. and Oleszek, W. (2018) Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. Phytomedicine 42: 25-33. 

  80. Bogdanova, K., Roderova, M., Kolar, M., Langova, K., Dusek, M., Jost, P., Kubelkova, K., Bostik, P. and Olsovska, J. (2018) Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant Staphylococci. Res. Microbiol. 169: 127-134. 

  81. Cermak, P., Olsovska, J., Mikyska, A., Dusek, M., Kadleckova, Z., Vanicek, J., Nyc, O., Sigler, K., Bostikova, V. and Bostik, P. (2017) Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. APMIS 125: 1033-1038. 

  82. Siragusa, G. R., Haas, G. J., Matthews, P. D., Smith, R. J., Buhr, R. J., Dale, N. M. and Wise, M. G. (2008) Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. J. Antimicrob. Chemother. 61: 853-858. 

  83. Zolnierczyk, A. K., Maczka, W. K., Grabarczyk, M., Winska, K., Wozniak, E. and Aniol, M. (2015) Isoxanthohumol-biologically active hop flavonoid. Fitoterapia 103: 71-82. 

  84. Fuchimoto, J., Kojima, T., Okabayashi, T., Masaki, T., Ogasawara, N., Obata, K., Nomura, K., Hirakawa, S., Kobayashi, N., Shigyo, T., Yokota, S., Fujii, N., Tsutsumi, H., Himi, T. and Sawada, N. (2013) Humulone suppresses replication of respiratory syncytial virus and release of IL-8 and RANTES in normal human nasal epithelial cells. Med. Mol. Morphol. 46: 203-209. 

  85. Sandoval-Ramirez, B. A., M Lamuela-Raventos, R., Estruch, R., Sasot, G., Domenech, M. and Tresserra-Rimbau, A. (2017) Beer polyphenols and menopause: effects and mechanisms-a review of current knowledge. Oxid. Med. Cell Longev. 4749131. 

  86. Abdi, F., Mobedi, H. and Roozbeh, N. (2016) Hops for menopausal vasomotor symptoms: mechanisms of action. J. Menopausal Med. 22: 62-64. 

  87. Milligan, S. R., Kalita, J. C., Pocock, V., Van De Kauter, V., Stevens, J. F., Deinzer, M. L., Rong, H. and De Keukeleire, D. (2000) The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J. Clin. Endocrinol. Metab. 85: 4912-4915. 

  88. Effenberger, K. E., Johnsen, S. A., Monroe, D. G., Spelsberg, T. C. and Westendorf, J. J. (2005) Regulation of osteoblastic phenotype and gene expression by hop-derived phytoestrogens. J. Steroid Biochem. Mol. Biol. 96: 387-399. 

  89. Ming, L. G., Lv, X., Ma, X. N., Ge, B. F., Zhen, P., Song, P., Zhou, J., Ma, H. P., Xian, C. J. and Chen, K. M. (2013) The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro. Endocrinology 154: 1202-1214. 

  90. Lu, X., Zhou, Y., Chen, K. M., Zhao, Z., Zhou, J. and Ma, X. N. (2013) Inhibitory effect of 8-prenylnaringenin on osteoclastogensis of bone marrow cells and bone resorption activity. Yao Xue Xue Bao 48: 347-351. 

  91. Lv, X., Chen, K. M., Ge, B. F., Ma, H. P., Song, P. and Cheng, K. (2013) Comparative study on effect of 8-prenlynaringenin and narigenin on activity of osteoclasts cultured in vitro. Zhongguo Zhong Yao Za Zhi 38: 1992-1996. 

  92. Luo, D., Kang, L., Ma, Y., Chen, H., Kuang, H., Huang, Q., He, M. and Peng, W. (2014) Effects and mechanisms of 8-prenylnaringenin on osteoblast MC3T3-E1 and osteoclastlike cells RAW264.7. Food Sci. Nutr. 2: 341-350. 

  93. Stompor, M. Uram, L. and Podgorski, R. (2017) In vitro effect of 8-prenylnaringenin and naringenin on fibroblasts and glioblastoma cells-cellular accumulation and cytotoxicity. Molecules 22: 1092. 

  94. Brunelli, E., Minassi, A., Appendino, G. and Moro, L. (2007) 8-Prenylnaringenin, inhibits estrogen receptor-alpha mediated cell growth and induces apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 107: 140-148. 

  95. Hemachandra, L., Madhubhani, P., Chandrasena, R., Esala, P., Chen, S. N., Main, M., Lankin, D. C., Scism, R. A., Dietz, B. M. and Pauli, G. F. (2012) Hops (Humulus lupulus) inhibits oxidative estrogen metabolism and estrogen-induced malignant transformation in human mammary epithelial cells (MCF-10A). Cancer Prev. Res. 5: 73-81. 

  96. Pepper, M. S., Hazel, S. J., Humpel, M. and Schleuning, W.D. (2004) 8-prenylnaringenin, a novel phytoestrogen, inhibits angiogenesis in vitro and in vivo. J. Cell Physiol. 199: 98-107. 

  97. Rong, H., Boterberg, T., Maubach, J., Stove, C., Depypere, H., Van Slambrouck, S., Serreyn, R., De Keukeleire, D., Mareel, M. and Bracke, M. (2001) 8-Prenylnaringenin, the phytoestrogen in hops and beer, upregulates the function of the E-cadherin/catenin complex in human mammary carcinoma cells. Eur. J. Cell Biol. 80: 580-585. 

  98. Di Vito, C., Bertoni, A., Nalin, M., Sampietro, S., Zanfa, M. and Sinigaglia, F. (2012) The phytoestrogen 8-prenylnaringenin inhibits agonist-dependent activation of human platelets. Biochim. Biophys. Acta 1820: 1724-1733. 

  99. Mukai, R., Horikawa, H., Lin, P. Y., Tsukumo, N., Nikawa, T., Kawamura, T., Nemoto, H. and Terao, J. (2016) 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311: R1022-R1031. 

  100. Urmann, C., Oberbauer, E., Couillard-Despres, S., Aigner, L. and Riepl, H. (2015) Neurodifferentiating potential of 8-prenylnaringenin and related compounds in neural precursor cells and correlation with estrogen-like activity. Planta Med. 81: 305-311. 

  101. Franco, L., Sanchez, C., Bravo, R., Rodriguez, A., Barriga, C. and Juanez, J. C. (2012) The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol. Hung. 99: 133-139. 

  102. Sekiguchi, F., Fujita, T., Deguchi, T., Yamaoka, S., Tomochika, K., Tsubota, M., Ono, S., Horaguchi, Y., Ichii, M., Ichikawa, M., Ueno, Y., Koike, N., Tanino, T., Nguyen, H.D., Okada, T., Nishikawa, H., Yoshida, S., Ohkubo, T., Toyooka, N., Murata, K., Matsuda, H. and Kawabata, A. (2018) Blockade of T-type calcium channels by 6-prenylnaringenin, a hop component, alleviates neuropathic and visceral pain in mice. Neuropharmacology 138: 232-244. 

  103. Bruneton, J. (1999) Pharmacognosy, phytochemistry, medicinal plants, 455-456, Lavoisier Publishing, Paris. 

  104. Stevens, J. F., Ivancic, M., Hsu, V. L. and Deinzer, M. L. (1997) Prenylflavonoids from Humulus lupulus. Phytochemistry 44: 1575-1585. 

  105. Stevens, J. F., Taylor, A. W. and Deinzer, M. L. (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 832: 97-107. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로