$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Transcriptional Response and Enhanced Intestinal Adhesion Ability of Lactobacillus rhamnosus GG after Acid Stress 원문보기

Journal of microbiology and biotechnology, v.28 no.10, 2018년, pp.1604 - 1613  

Bang, Miseon (Division of Animal Science, Chonnam National University) ,  Yong, Cheng-Chung (Division of Animal Science, Chonnam National University) ,  Ko, Hyeok-Jin (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ,  Choi, In-Geol (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ,  Oh, Sejong (Division of Animal Science, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

Lactobacillus rhamnosus GG (LGG) is a probiotic commonly used in fermented dairy products. In this study, RNA-sequencing was performed to unravel the effects of acid stress on LGG. The transcriptomic data revealed that the exposure of LGG to acid at pH 4.5 (resembling the final pH of fermented dairy...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 85% NaCl to remove the remaining FITC and then orally administered to male C57BL/6J mice. After 12 h, the mice were sacrificed, and their intestines were collected to detect the presence of adherent labeled cells using a confocal laser scanning microscope (FV500, Olympus, Japan). Animal experiments were conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee at Chonnam National University (project number: CNUIACUC-YB-2012-40).
  • Quantitative PCR (qPCR) was performed using KAPA SYBR FAST qPCR kit (KapaBiosystems, USA) in a thermal cycler (Bio-Rad Laboratories, USA) with the conditions of initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation at 95°C for 10 sec, annealing at 54°C for 15 sec and extension at 72°C for 15 sec.
  • The findings presented in this study provide a detailed understanding of the adaptation of LGG towards acid stress conditions, including the enhancement of its adhesion ability (Fig. 6). Our findings lead us to a novel discovery regarding the enhanced adhesion properties of LGG upon acid stress treatment, especially the expression of the spaFED pili gene cluster, which was previously undetectable in LGG cultured outside the mammalian gastrointestinal tract.

대상 데이터

  • RNA sequencing was performed with an Illumina MiSeq platform. All data sets have been deposited in the Gene Expression Omnibus database under accession number GSE107337. Data analysis was performed using EdgeR, Bioconductor components in R packages with LGG as the reference genome.
  • Lactobacillus rhamnosus strain GG ATCC 53103 was obtained from Valio, Helsinki, Finland, and maintained in de-Man, Rogosa and Sharpe (MRS) medium to mid-log phase (optical density at 600 nm [OD600nm] of 0.6, equivalent to approximately 3 × 108 CFU/ml).
  • cDNA was synthesized from 1 µg of the extracted RNA with an RT Premix Oligo (dt) Kit (Intron, Korea). The primers used in this study were designed using Primer3plus software (http://www. bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi), based on the genome sequence of LGG (Table 1). Glyceraldehyde-3- phosphate dehydrogenase (GAPDH) was used as an internal control gene.

데이터처리

  • Duncan’s multiple range test was used to determine the significance of differences between means at a significance threshold of p < 0.05.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Bang M, Oh S, Lim KS, Kim Y, Oh S. 2014. The involvement of ATPase activity in the acid tolerance of Lactobacillus rhamnosus strain GG. Int. J. Dairy Technol. 67: 229-236. 

  2. Lambert R, Stratford M. 1999. Weak-acid preservatives: modelling microbial inhibition and response. J. Appl. Microbiol. 86: 157-164. 

  3. Serrazanetti DI, Guerzoni ME, Corsetti A, Vogel R. 2009. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol. 26: 700-711. 

  4. Choi SH, Baumler DJ, Kaspar CW. 2000. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157: H7. Appl. Environ. Microbiol. 66: 3911-3916. 

  5. Warnecke T, Gill RT. 2005. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4: 25. 

  6. Duary RK, Batish VK, Grover S. 2010. Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR. Res. Microbiol. 161: 399-405. 

  7. Kullen MJ, Klaenhammer TR. 1999. Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol. Microbiol. 33: 1152-1161. 

  8. Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429-453. 

  9. Broadbent JR, Larsen RL, Deibel V, Steele JL. 2010. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J. Bacteriol. 192: 2445-2458. 

  10. Graham JW, Lei MG, Lee CY. 2013. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. J. Bacteriol. 195: 4506-4516. 

  11. Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H. 2003. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J. Bacteriol. 185: 5117-5124. 

  12. Suokko A, Poutanen M, Savijoki K, Kalkkinen N, Varmanen P. 2008. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics 8: 1029-1041. 

  13. Wall T, Bath K, Britton RA, Jonsson H, Versalovic J, Roos S. 2007. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl. Environ. Microbiol. 73: 3924-3935. 

  14. Salminen S, Isolauri E, Salminen E. 1996. Probiotics and stabilisation of the gut mucosal barrier. Asia Pac. J. Clin. Nutr. 5: 53-56. 

  15. Di Caro S, Tao H, Grillo A, Elia C, Gasbarrini G, Sepulveda A, et al. 2005. Effects of Lactobacillus GG on genes expression pattern in small bowel mucosa. Dig. Liver Dis. 37: 320-329. 

  16. Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R, et al. 2011. Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cells. World J. Gastroenterol. 17: 750-759. 

  17. Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM. 2012. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 78: 2337-2344. 

  18. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA 106: 17193-17198. 

  19. Mandlik A, Swierczynski A, Das A, Ton-That H. 2008. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 16: 33-40. 

  20. Proft T, Baker E. 2009. Pili in Gram-negative and Gram-positive bacteria-structure, assembly and their role in disease. Cell Mol. Life Sci. 66: 613-635. 

  21. Tynkkynen S, Singh KV, Varmanen P. 1998. Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int. J. Food Microbiol. 41: 195-204. 

  22. Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, et al. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int. J. Food Microbiol. 147: 181-187. 

  23. Rallu F, Gruss A, Maguin E. 1996. Lactococcus lactis and stress. Antonie van Leeuwenhoek 70: 243-251. 

  24. Lim EM, Ehrlich SD, Maguin E. 2000. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21: 2557-2561. 

  25. Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman TA, et al. 2012. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J. Proteom. 75: 1357-1374. 

  26. Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183. 

  27. Wu C, Zhang J, Du G, Chen J. 2013. Aspartate protects Lactobacillus casei against acid stress. Appl. Microbiol. Biotechnol. 97: 4083-4093. 

  28. Rintahaka J, Yu X, Kant R, Palva A, von Ossowski I. 2014. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis. PLoS One 9: e113922. 

  29. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, et al. 2010. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl. Environ. Microbiol. 76: 2049-2057. 

  30. Motherway MOC, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, et al. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc. Natl. Acad. Sci. USA 108: 11217-11222. 

  31. Doron S, Snydman DR, Gorbach SL. 2005. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol. Clin. North Am. 34: 483-498. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로