$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

적색/원적색광 조사 비율에 따른 3종 배추과 채소 새싹의 Glucosinolate 함량 및 항산화 기능성 평가
Evaluation of Individual Glucosinolates, Phytochemical Contents, and Antioxidant Activities under Various Red to Far-Red Light Ratios in Three Brassica Sprouts 원문보기

시설원예ㆍ식물공장 = Protected horticulture and plant factory, v.27 no.4, 2018년, pp.415 - 423  

조정수 (전북대학교 원예학과) ,  이준구 (전북대학교 원예학과)

초록
AI-Helper 아이콘AI-Helper

본 연구의 목적은 3가지의 배추과 작물의 새싹에서 적색(R)과 원적외선(FR)광에 초점을 맞추어서 glucosinolate(GSL), 총 페놀, 총 플라보노이드, 비타민 C 함량, 항산화 활성을 평가하는 것이다. 제한된 환경조건에서 5일된 새싹에 3가지의 R/FR비율을 2일동안 24시간 노출시켜 식물화학물질과 항산화활성을 대조군[형광등, R:B(8:2), 암조건]과 비교하였다. 총 GSL 함량은 각 처리 기간 동안 3가지의 작물 중 브로콜리에서 가장 높았으며, 브로콜리 새싹에서 R/FR 비율이 증가함에 따라 총 GSL 함량이 감소하는 반면 배추와 무의 새싹에서는 유의하지 않은 결과를 보여주었다. 배추 및 브로콜리의 주요 GSL인 progointrin은 대조군에 비해 R/FR 비율이 감소함에 따라 최대 38%, 69%까지 감소하였다. 3가지 배추과 새싹에서 페놀, 플라보노이드 및 비타민 C의 함량 모두 암조건에서 가장 낮았다. 총 페놀 및 항산화 활성은 3가지 배추과 새싹에서 R/FR 비율이 감소할수록 증가하는 반면, 총 플라보노이드와 비타민 C 함량은 작물 간 다른 양상을 보였다. 이러한 결과는 FR의 보광에 따라 배추과 새싹의 기능적 품질을 향상시킬 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

The aim of this study was to evaluate the individual glucosinolate (GSL), total phenol, total flavonoid, and vitamin C content, and antioxidant activity under various light quality condition, mainly focusing on red (R) to far-red (FR) light ratios in three Brassica sprouts (radish, Chinese cabbage, ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 최근 식물 기능성 제고 및 형태발달에 큰 영향을 미치는 것으로 알려져 있으나 다른 광질에 비하여 상대적으로 기능성 제고에 대한 평가가 부족했던 FR의 비율을 3수준으로 달리하고 배추과 작물의 핵심 유용 물질인 개별 GSL의 함량 및 일반 항산화 기능성을 3종 배추과 싹채소를 이용하여 평가하고자 하였다.
  • 본 연구의 목적은 3가지의 배추과 작물의 새싹에서 적색(R)과 원적외선(FR)광에 초점을 맞추어서 glucosinolate(GSL), 총 페놀, 총 플라보노이드, 비타민 C 함량, 항산화 활성을 평가하는 것이다. 제한된 환경조건에서 5일된 새싹에 3가지의 R/FR비율을 2일동안 24시간 노출시켜 식물화학물질과 항산화활성을 대조군[형광등, R:B(8:2), 암조건]과 비교하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
식물공장이란? 식물공장은 기후에 영향을 받지 않고 시설 내에서 빛, 온도, 이산화탄소, 양분 및 습도와 같은 환경요인을 인위적으로 통제하여 작물을 계획 생산할 수 있는 농업시스템이다(Heo 등, 2013; Kozai, 2013). 인공광 이용형 식물공장은 형광등, LED 및 고압 나트륨 램프와 같은 인공광원을 이용하거나 태양광의 보조 광원으로서 설치 이용하는 작물 재배 시스템이다(wheeler, 2008).
인공광 이용형 식물공장에 사용되는 광원은? 식물공장은 기후에 영향을 받지 않고 시설 내에서 빛, 온도, 이산화탄소, 양분 및 습도와 같은 환경요인을 인위적으로 통제하여 작물을 계획 생산할 수 있는 농업시스템이다(Heo 등, 2013; Kozai, 2013). 인공광 이용형 식물공장은 형광등, LED 및 고압 나트륨 램프와 같은 인공광원을 이용하거나 태양광의 보조 광원으로서 설치 이용하는 작물 재배 시스템이다(wheeler, 2008). 식물재배용 인공광원 중 발광다이오드(Light Emitting Diode, LED)는 외부 환경 조건에 관계없이 주년 생산이 가능한 밀폐형 식물공장의 인공광원으로 주로 사용되고 있다(Son와 Oh, 2013).
다양한 LED 광질에 따라 식물에 미치는 효과는? 광질에 따른 식물생장 및 2차대사산물 축적에 미치는 영향에 관한 연구는 다수 수행되었다. 적색광은 다양한 식물의 성장에 효과적이며(Johkan 등, 2010; Nishimura 등, 2009), 청색광의 경우 안토시아닌함량의 증가에 효과적이고(Giliberto 등, 2005), 또한 케일의 새싹에서 glucoraphanin, 총 phenolic, 안토시아닌함량 및 항산화활성을 증가시킨다고 보고하였고(Qian 등., 2016), UV-A 역시 상추에서 안토시아닌 축적을 유도한다(Tsormpatsidis 등, 2008). 밀폐형 식물공장에서 R/FR 비율에 따라 상추의 생육 및 다양한 생체활성화합물이 증가 하였다고 보고하였다(Lee 등, 2016; Lee 등, 2015).
질의응답 정보가 도움이 되었나요?

참고문헌 (47)

  1. Bhandari S.R. and J.H. Kwak. 2014. Seasonal variation in phytochemicals and antioxidant activities in different tissues of various broccoli cultivars. Afr. J. Biotechnol. 13:604-615. 

  2. Bhandari S.R. and J.H. Kwak. 2015. Chemical composition and antioxidant activity in different tissues of Brassica vegetables. Molecules 20:1228-1243. 

  3. Bhandari, S.R., J.S. Jo, and J.G. Lee. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827-15841. 

  4. Boccalandro, H.E., M.L. Rugnone, J.E. Moreno, E.L. Ploschuk, L. Serna, M.J. Yanovsky, and J.J. Casal. 2009. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol. 150:1083-1092. 

  5. Carvalho, S.D. and K.M. Folta. 2014. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Horticulture research, 1, 8. 

  6. Cargnel, M. D., Demkura, P. V., & Ballare, C. L. 2014. Linking phytochrome to plant immunity: low red: far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. New Phytologist, 204, 342-354. 

  7. Clarke, D.B. 2010. Glucosinolates, structures and analysis in food. Anal. Methods 2:310-325. 

  8. Deng, M, H, Qian, L, Chen, Bo Sun, Jiaqi Chang, Huiying Miao, Congxi Cai, Qiaomei Wang. 2017. Influence of preharvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts. Food Chem. 222:1-5. 

  9. Finlayson, S.A., S.R. Krishnareddy, T.H. Kebrom, and J.J. Casal. 2010. Phytochrome regulation of branching in Arabidopsis. Plant Physiol. 152:914-1927. 

  10. Giliberto, L., G. Perrotta, P. Pallara, J.L. Weller, P.D. Fraser, P.M. Bramley, A. Fiore, M. Tavazza, G. Giuliano. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137:199-208. 

  11. Goto, E. 2012. Plant production in a closed plant factory with artificial light. Acta Hortic. 956:37-49. 

  12. Heo, J.W., D.E. Kim, K.S. Han, and S.J. Kim. 2013. Effect of light-quality control on growth of Ledebouriella seseloides grown in plant factory of an artificial light type. Kor. J. Environ. Agric. 32:193-200. 

  13. Huseby. S., A. Koprivova1, B.R. Lee1, S. Saha, R. Mithen, A.B. Wold, G.B. Bengtsson and S. Kopriva. 2013 Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J. Exp. Bot. 64:1039-1048. 

  14. Halkier, B.A. and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Ann. Rev. Plant Biol. 57:303-338. 

  15. Harborme, J. B. and C.A. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55:481-504. 

  16. Holmes, M.G. and H. Smith. 1977a. Function of phytochrome in natural environment 1. Characterization of daylight for studies in photomorphogenesis and photoperiodism. Photochem. Photobiol. 25:533-538. 

  17. Holmes, M.G. and H. Smith. 1977b. The function of phytochrome in natural environment 4. Light quality and plant development. Photochem. Photobiol. 25:551-557. 

  18. Hertel, C., M. Leuchner, and A. Menzel. 2011. Vertical variability of spectral ratios in a mature mixed forest stand. Agric. For. Meteorol. 151:1096-1105. 

  19. Jeong, E.J., J.W. Kim, and Y.C. Kim. 2008. Rhus verniciflua stokes attenuates glutamate-induced neurotoxicity in primary cultures of rat cortical cells. Nat. Prod. Sci. 14:156-160. 

  20. Johkan, M., K. Shoji, F. Goto, S. Hahida, and T. Yoshihara. 2010. Blue lightemitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814. 

  21. Jo, J.S., S.R. Bhandari, G.H. Kang, and J.G. Lee. 2016. Comparative Analaysis of Individual Glucosinolates, Phytochemicals, and Antioxidant Activities in Broccoli Breeding Lines. Hortic. Environ, Biotechnol. 57(4):392-403. 

  22. Kozai, T. 2013. Sustainable plant factory: Closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta Hort. 1004:27-40. 

  23. Lee. M.J., K.H. Son, and M.M. Oh. 2016. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic. Environ. Biotechnol. 57:139-147. 

  24. Lee. M.J., S.Y. Park, and M.M. Oh. 2015. Growth and cell division of lettuce plants under various ratios of red to farred light-emitting diodes. Hort. Environ. Biotechnol. 56:186-194. 

  25. Liu, Z., A. H. Hirani, P. B. McVetty, F. Daayf, C. F. Quiros, and G. Li. 2012. 'Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family.' Plant Mol. Biol. 79:179-189. 

  26. Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. Hort-Science 43:1951-1956. 

  27. Menichini F, R. Tundis, M. Bonesi, M.R. Loizzo, F. Conforti, G. Statti, B. De Cindio, P.J. Houghton, and F. Menichini. 2009. The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. Cv Habanero. Food Chem. 114:553-560 

  28. Mithen, R. F. 2001. 'Glucosinolates and their degradation products.' Advances in Botanical Research 35:213-232. 

  29. Morrow, R.C. 2008. LED lighting in horticulture. Hort-Science 43:1947-1950. 

  30. Nishimura, T., K. Ohyama, E. Goto, and N. Inagaki. 2009. Concentration of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments. Sci. Hortic. 122:134-137. 

  31. Oh, K.W., C.k. Lee, Y.S Kim, S.K. Eo, and S.S. Han. 2000. Antiherpetic activities of acidic protein bound polysacchride isolated from Ganoderma lucidum alone and in combinations with acyclovir and vidarabine. J. Ethnopharmacol. 72:221-227. 

  32. Park, S.H., H.S. Hwang, and J.H. Han. 2004. Development of drink from composition with medicinal plants and evaluation of its physiological function. Korean J. Nutr. 37:364-372. 

  33. Qian H, T. Liu, M. Deng, H. Miao, C. Cai, W. Shen, and Q. Wang. 2016. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem. 196:1232-1238. 

  34. Reed, J.W., P. Nagpal, D.S. Poole, M. Furuya, and J. Chory. 1993. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell Online 5:147-157. 

  35. Salisbury, F.J., A. Hall, C.S. Grierson, and K.J. Halliday. 2007. Phytochrome coordinates Arabidopsis shoot and root development. Plant J. 50:429-438. 

  36. Sasidharan, R., C.C. Chinnappa, M. Staal, J.T.M. Elzenga, R. Yokoyama, K. Nishitani, L. Voesenek, and R. Pierik. 2010. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by Xyloglucan endotransglucosylase/hydrolases. Plant Physiol. 154:978-990. 

  37. Singleton V.L. and J.A. Rossi Jr. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Amer. J. Enol. Viticult. 16:144-158. 

  38. Son. K.H., J.H. Park, D.I. Kim, M.M. Oh. 2012. Leaf Shape Index, Growth, and Phytochemicals in Two Leaf Lettuce Cultivars Grown under Monochromatic Light-emitting Diodes. Korean J. Hortic. Sci. Technol. 30:664-672. 

  39. Son, K.H. and M.M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. 

  40. Steindal. A.L.H., J. Molmann, G.B. Bengtsson, and T.J. Johansen. 2013. Influence of day length and temperature on the Content of Health-Related Compounds in Broccoli (Brassica oleracea L. var. italica). J. Agric. Food Chem. 61:10779-10786. 

  41. Taiz, L. and E. Zeiger. 1991. Plant physiology. 1 st ed., Benjamin/Cummings Publishing Co. New York. 

  42. Thaipong K, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, and D.H. Byrne. 2006. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19:669-675. 

  43. Tsormpatsidis, E., R.G.C. Henbest, F.J. Davis, N.H. Battey, P. Hadley, and A. Wagstaffe. 2008. UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce 'Revolution' grown under polyethylene films. Environ. Exp. Bot. 63:232-239. 

  44. Turnbull, M.H. and D.J. Yates. 1993. Seasonal variation in the red/far-red ratio and photon flux density in an Australian subtropical rain-forest. Agric. For. Meteorol. 64:111-127. 

  45. Vale. A.P., J. Santos, N.V. Brito, D. Fernandes, E. Rosa, M. Beatriz, and P.P. Oliveira. 2015. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts. Phytochemistry 115:252-260. 

  46. Wheeler R.M. 2008. A historical background of plant lighting: an introduction to the workshop. HortScience 43:1942-1943.3-342. 

  47. Yeh, N. and J.P. Chung. 2009. High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sust. Energy Rev. 13:2175-2180. 

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로