$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

극한 환경용 반도체 기술 동향
Technical Trends of Semiconductors for Harsh Environments 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.33 no.6, 2018년, pp.12 - 23  

장우진 (RF) ,  문재경 (RF) ,  이형석 (RF) ,  임종원 (RF) ,  백용순 (광무선융합연구본부)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we review the technical trends of diamond and gallium oxide ($Ga_2O_3$) semiconductor technologies among ultra-wide bandgap semiconductor technologies for harsh environments. Diamond exhibits some of the most extreme physical properties such as a wide bandgap, high breakdow...

표/그림 (9)

참고문헌 (32)

  1. P.N. Volpe et al., "Extreme Dielectric Strength in Boron Doped Homo-Epitaxial Diamond," Appl. Phys. Lett., vol. 97, 2010, Article no. 223501. 

  2. A. Traore et al., "Zr/oxidized Diamond Interface for High Power Schottky Diodes," Appl. Phys. Lett., vol. 104, 2014, Article no. 052105. 

  3. H. Umezawa et al., "High Temperature Application of Diamond Power Device," Diamond Related Mater., vol. 24, 2012, pp. 201-205. 

  4. R. Kumaresan et al., "Vertical Structure Schottky Barrier Diode Fabrication Using Insulating Diamond Substrate," Diamond Related Mater., vol. 19, no. 10, 2010, pp. 1324-1329. 

  5. V.S. Bormashov et al., "Thin Large Area Vertical Schottky Barrier Diamond Diodes with Low On-resistance Made by Ion-Beam Assisted Lift-off Technique," Diamond Related Mater., vol. 75, 2017, pp. 78-84. 

  6. T. Makino et al., "Diamond Schottky-pn Diode without Trade-off Relationship Between On-resistance and Blocking Voltage," Phys. Status Solidi A, vol. 207, no. 9, 2010, pp. 2105-2109. 

  7. M. Brezeanu et al., "On-State Behavior of Diamond M-I-P Structure," IEEE Semiconductor Conf., Sinaia, Romania, Sept. 27-29, 2006, pp. 311-314. 

  8. S.J. Rashid et al., "Numerical Parameterization of Chemical-Vapor-Deposited (CVD) Single-Crystal Diamond for Device Simulation and Analysis," IEEE Trans. Electron Dev., vol. 55, no. 10, 2008, pp. 2744-2756. 

  9. 鈴木?理子, "高耐?ダイヤモンドpinダイオ?ド: 卓越した材料ポテンシャルからデバイス?現に向けて," ?用物, vol. 85, no. 3, 2016, pp. 218-222. 

  10. H. Umezawa et al., "Characterization of X-Ray Radiation Hardness of Diamond Schottky Barrier Diode and Metal-semiconductor Field-Effect-Transistor," Int. Sypm. Power. Semiconductor. Dev. IC's, Sapporo, Japan, 2017, pp. 379-382. 

  11. H. Umezawa et al., "Diamond Metal-Semiconductor Field-Effect Transistor with Breakdown Voltage Over 1.5 kV," IEEE Electron Dev. Lett., vol. 35, no. 11, 2014, pp.1112-1114. 

  12. T. Iwasaki et al., "High-Temperature Operation of Diamond Junction Field-Effect Transistors with Lateral p-n Junctions," IEEE Electron Dev. Lett., vol. 34, no. 9, 2013,pp. 1175-1177. 

  13. Y. Kitabayashi et al., "Normally-Off C-H Diamond MOSFETs with Partial C-O Channel Achieving 2-kV Breakdown Voltage," IEEE Electron Dev. Lett., vol. 38, no. 3, Mar. 2017, pp. 363-366. 

  14. H. Kawarada et al., "Durability-Enhanced Two-Dimensional Hole Gas of C-H Diamond Surface for Complementary Power Inverter Applications," Sci. Rep., vol. 7, 2017, Article no. 42368. 

  15. K. Hirama et al., "Diamond Field-Effect Transistors with 1.3 A/mm Drain Current Density by $Al_2O_3$ Passivation Layer," Jpn. J. Appl. Phys., vol. 51, no. 9, 2012, pp. 090112:1-090112:5. 

  16. M. Kasu, "Diamond Field-Effect Transistors as Microwave Power Amplifiers," NTT Techn. Rev., vol. 8, no. 8, Aug. 2010, pp. 1-5. 

  17. T.J. Anderson et al., "Advanced in Diamond Integration for Thermal Management in GaN Power HEMTs," ECS Trans., vol. 64, no. 7, 2014, pp. 185-190. 

  18. T.J. Anderson et al., "Profiling the Temperature Distribution in AlGaN/GaN HEMTs with Nanocrystalline Diamond Heat Spreading Layers," CS MANTECH Conf., Boston, MA, USA, Apr. 23-26, 2012, pp. 1-3.. 

  19. X.-F. Zheng et al., "Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors," China Phys. Lett., vol. 34, no. 2, 2017, pp. 027301:1-027301:4. 

  20. A. Kuramata et al., "High-Quality ${\beta}$ - $Ga_2O_3$ Single Crystals Grown by Edge-Defined Film-Fed Growth," Jpn. J. Appl. Phys., vol. 55, no. 12, 2016, pp. 1202A2:1-1202A2:6. 

  21. Z. Galazka et al., "On the Bulk ${\beta}$ - $Ga_2O_3$ Single Crystals Grown by the Czochralski Method," J. Cryst. Growth, vol. 404, 2014, pp. 184-191. 

  22. E.G. Villora et al., "Large-size ${\beta}$ - $Ga_2O_3$ single crystals and wafers," J. Cryst. Growth, vol. 270, no. 3-4, 2004, pp. 420-426. 

  23. M. Oda et al., "Schottky Barrier Diodes of Corundum-Structured Gallium Oxide Showing On-resistance of $0.1m{\Omega}cm^2$ Grown by Mist Epitaxy," Appl. Phys. Exp., vol. 9, no. 2, 2016, pp. 021101:1021101:3. 

  24. K. Konishi et al., "1-kV Vertical $Ga_2O_3$ Field-Plated Schottky Barrier Diodes," Appl. Phys. Lett., vol. 110, 2017, pp. 103506:1-103506:4. 

  25. J. Yang et al., "1.5 MeV Electron Irradiation Damage in ${\beta}$ - $Ga_2O_3$ Vertical Rectifiers," J. Vacuum Sci. Technol. B, vol. 35, no. 3, 2017, pp. 031208:1-031208:4. 

  26. M. Higashiwaki et al., "Gallium Oxide( $Ga_2O_3$ ) Metal-Semiconductor Field-Effect Transistors on Single-Crystal- $Ga_2O_3$ (010) Substrates," Appl. Phys. Lett., vol. 100, 2012, pp. 013504:1-013504:3. 

  27. M. Higashiwaki et al., "Depletion-Mode $Ga_2O_3$ MOSFETs on ${\beta}$ - $Ga_2O_3$ (010) Substrates with Si-ion-Implanted Channel and Contacts," IEEE Int. Electron Dev. Meeting, Washington, DC, USA, Dec. 9-11, 2013, pp. 1-4.. 

  28. M. Higashiwaki et al., "Field-Plated $Ga_2O_3$ MOSFETs with a Breakdown Voltage of over 750 V," IEEE Electron Dev. Lett., vol. 37, no. 2, 2016, pp. 212-215. 

  29. K. Zeng et al., "Interface State Density in Atomic Layer Deposited $SiO_2$ / ${\beta}$ - $Ga_2O_3$ (201) MOSCAPs," IEEE Electron Device Lett., vol. 37, no. 7, 2016, pp. 906-909. 

  30. H. Zhou et al., "High-Performance Depletion/ Enhancement-Mode ${\beta}$ - $Ga_2O_3$ on Insulator(GOOI) Field-Effect Transistors with Record Drain Currents of 600/450 mA/mm," IEEE Electron Device Lett., vol. 38, no. 1, 2017, pp. 103-106. 

  31. S. Ahn et al., "Effect of 5 MeV Proton Irradiation Damage on Performance of ${\beta}$ - $Ga_2O_3$ Photodetectors," J. Vac. Sci. Tech. B, vol. 34, no. 4, 2016, pp. 041213:1-041213:5. 

  32. 문재경 외, "산화갈륨 전계효과 트랜지스터 제작 및 특성(Characteristics of ${\beta}$ - $Ga_2O_3$ FETs fabricated on Fe-doped S.I. single crystal ${\beta}$ - $Ga_2O_3$ substrate)," 2018 한국전기전자재료학회 하계학술대회 OB1-05 (2018). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로