$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

양절형 밀 생장에 대한 온도의 영향과 유전자 발현 양상
Effect of Temperature on Growth and Related Gene Expression in Alternative Type Wheat Cultivars 원문보기

Korean journal of crop science = 韓國作物學會誌, v.64 no.4, 2019년, pp.384 - 394  

허지혜 (건국대학교 식량자원과학과) ,  성혜주 (건국대학교 식량자원과학과) ,  양운호 (농촌진흥청 국립식량과학원 중부작물부 재배환경과) ,  정우석 (건국대학교 식량자원과학과)

초록
AI-Helper 아이콘AI-Helper

국내에서 육성된 파성3으로 분류된 밀의 생장에 대한 고온의 영향을 알아보기 위해 분얼기부터 등숙기까지 일평균 17℃, 20℃, 23℃, 26℃ 온도 처리에 의해 나타나는 밀의 생육 특성과 유전자 발현양의 변이를 분석하였다. 1. 밀의 생산성과 밀접한 연관이 있는 유효분얼수, 건물중은 수안밀과 조은밀은 일평균 온도 23℃ 이상에서 감소하였고, 진품밀은 20℃ 이상에서 감소하였다. 2. 진품밀의 경우 온도 처리 50일 후 온도 조건에 따라 생육상이 뚜렷이 구분되었는데, 17℃에서 영양생장 단계를 보였고, 20℃ 이상에서 출수·개화 단계를 나타냈다. 3. 온도와 관련된 생리대사에 관여한다고 알려진 유전자 16개를 대상으로 RT-qPCR을 진행하여 온도 처리 50일 후 진품밀의 17℃와 23℃ 처리구에서 유전자 발현 수준의 차이를 확인해본 결과, 23℃ 처리구에서 발현이 증가한 유전자에는 HSP70, HSP101, VRN2, ERF1, TAA1, YUCCA2, GolS, MYB73, Histone H2A이 있고, 감소한 유전자에는 VRN-A1, DREB2A, HsfA3, PIF4, PhyB, HSP17.6CII, rbcL이 있다. 4. 16개 유전자 중 MYB73, YUCCA2, HSP101, ERF1, VRNA1이 저온과 고온 조건 사이에서 유전자 발현양에 큰 차이를 보였다. 5. 온도에 의한 진품밀의 출수 표현형은 평균온도 17℃와 20℃ 사이에서 결정적으로 나타나는 것으로 보이며, 온도에 의한 생육상과 형태적 특성의 차이는 단일 유전자 발현이 아닌 고온 스트레스 반응과 관련된 여러 유전자의 복합적인 메커니즘에 의해 영향을 받을 것으로 생각된다.

Abstract AI-Helper 아이콘AI-Helper

We have investigated the effects of ambient temperature on the growth of wheat in Korea. The differences in the growth phase of wheat were compared according to the temperature treatment. The productive tiller number and dry weight were decreased in a plot under a higher temperature treatment. We fo...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 온도 조건에 의해 생육단계 차이가 나타나는 밀 품종을 선정하여 고온 스트레스와 관련된 유전자 발현 차이를 비교, 분석하여 밀의 춘파 시 고온에 적응하는 밀 품종 선발을 위한 기초자료를 얻고자 실시하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
식물의 고온 스트레스 반응 기작에는 무엇이 관여하는가? 식물의 고온 스트레스 반응 기작에는 Heat Shock Transcription Factors (HSFs), Heat Shock Proteins (HSPs), Dehydration Responsive Element Binding Protein 2A (DREB2A)와 같은 전사 인자(Transcription factor)가 관여하며, 전사조절 인자들의 단계적 발현으로 고온 스트레스에 관여하는하위 유전자들의 발현이 이어진다(Ohama et al., 2017).
밀의 특징은 무엇인가? 밀(Triticum aestivum L.)은 서늘하고 건조한 지대에서 잘 자라며, 여름철 고온 환경은 밀 생산의 제한요인 중 하나로 알려져 있다. 온도 상승은 밀의 생산성을 크게 감소시키며, 전 세계 평균 온도가 1°C 상승함에 따라 밀 생산량은 최대 6%까지 감소할 것으로 보고 되었다(Shpiler & Blum, 1991;Asseng et al.
온도에 감응하여 개화·출수를 조절하는 유전자 중 하나인 VRN의 특징은 무엇인가? 온도에 감응하여 개화·출수를 조절하는 유전자 중 하나인 VRN에는 VRN1, VRN2, VRN3가 알려져 있다. VRN1은저온 처리에 의해 발현이 증가하고, 개화 촉진 유전자 VRN3(FT)를 억제하는 VRN2의 작용을 막아 영양생장에서 생식생장으로 이행을 촉진시킨다. 반면 고온 처리에 의해 VRN1의 발현은 감소하고, VRN2의 발현은 증가한다고 보고되었다(Dixon et al., 2019).
질의응답 정보가 도움이 되었나요?

참고문헌 (43)

  1. Ahn, H., K. Jo, D. Jeong, M. Pak, J. Hur, W. Jung, and S. Kim. 2019a. PropaNet: Time-varying condition-specific transcriptional network construction by network propagation. Front. Plant. Sci. 10 : 698. 

  2. Ahn, H., I. Jung, H. Chae, D. Kang, W. Jung, and S. Kim. 2019b. HTR gene: a computational method to perform the integrated analysis of multiple heterogeneous time-series data: case analysis of cold and heat stress response signaling genes in Arabidopsis. BMC Bioinformatics. 20(S16) : 588. 

  3. Albihlal, W. S., I. Obomighie, T. Blein, R. Persad, I. Chernukhin, Crespi, M., and P. M. Mullineaux. 2018. Arabidopsis heat shock transcription factora1b regulates multiple developmental genes under benign and stress conditions. J. Exp. Bot. 69(11) : 2847-2862. 

  4. Asseng, S., F. Ewert, P. Martre, R. P. Rotter, D. B. Lobell, D. Cammarano, and J. W. White, et al. 2014. Rising temperatures reduce global wheat production. Nature Climate Change. 5(2) : 143-147. 

  5. Blakeslee, J. J., T. Spatola Rossi, and V. Kriechbaumer. 2019. Auxin biosynthesis: spatial regulation and adaptation to stress. J. Exp. Bot. 70(19) : 5041-5049. 

  6. Boden, S. A., M. Kavanova, E. J. Finnegan, and P. A. Wigge. 2013. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol. 14(6) : R65. 

  7. Campbell, J. L., N. Y. Klueva, H. Zheng, J. Nieto-Sotelo, T. H., Ho, and H. T. Nguyen. 2001. Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochim. Biophys. Acta. 1517(2) : 270-277. 

  8. Cheng, M. C., P. M. Liao, W. W. Kuo, and T. P. Lin. 2013. The Arabidopsis ethylene response factor1 regulates abiotic stressresponsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 162(3) : 1566-1582. 

  9. Deng, W., M. C. Casao, P. Wang, K. Sato, P. M. Hayes, E. J. Finnegan, and B. Trevaskis. 2015. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 6 : 5882. 

  10. Diaz, A., M. Zikhali, A. S. Turner, P. Isaac, and D. A. Laurie. 2012. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PlosOne. 7(3) : e33234. 

  11. Dixon, L. E., I. Karsai, T. Kiss, N. M. Adamski, Z. Liu, Y. Ding, V. Allard, S. A. Boden, and S. Griffiths. 2019. Vernalization1 controls developmental responses of winter wheat under high ambient temperatures. Development. 146(3) : dev172684. 

  12. Duan, Y. H., J. Guo, K. Ding, S. J. Wang, H. Zhang, X. W. Dai, Y. Y. Chen, F. Govers, L. L. Huang, and Z. S. Kang. 2011. Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol. Biol. Rep. 38(1) : 301-307. 

  13. Ergun, N., S. Ozcubukcu, M. Kolukirik, and O. Temizkan. 2014. Effects of temperature-heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings. Acta Biol. Hung. 65(4) : 439-450. 

  14. Farooq, M., H. Bramley, J. A. Palta, and K. H. M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences. 30(6) : 491-507. 

  15. Franklin, K. A., S. H. Lee, D. Patel, S. V. Kumar, A. K. Spartz, C. Gu, S. Ye, P. Yu, G. Breen, J. D. Cohen, P. A. Wigge, and W. M. Gray. 2011. Phytochrome-Interacting Factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl. Acad. Sci. U. S. A. 108(50) : 20231-20235. 

  16. Gangappa, S. N., S. Berriri, and S. V. Kumar. 2017. PIF4 Coordinates Thermosensory Growth and Immunity in Arabidopsis. Curr. Biol. 27(2) : 243-249. 

  17. Gimenez, M. J., F. Piston, and S. G. Atienza. 2011. Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta. 233(1) : 163-173. 

  18. Giorno, F., M. Wolters-Arts, S. Grillo, K. D. Scharf, W. H. Vriezen, and C. Mariani. 2010. Developmental and heat stressregulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61(2) : 453-462. 

  19. Hasanuzzaman, M., K. Nahar, M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14(5) : 9643-9684. 

  20. Hutsch, B. W., D. Jahn, and S. Schubert. 2018. Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J. Agron. Crop Sci. 205(1) : 22-32. 

  21. Islam, M. R., B. Feng, T. Chen, L. Tao, and G. Fu. 2018. Role of abscisic acid in thermal acclimation of plants. J. Plant Biol. 61(5) : 255-264. 

  22. Jeong, J., and G. Choi. 2013. Phytochrome-interacting factors have both shared and distinct biological roles. Mol. Cells. 35(5) : 371-380. 

  23. Khalil, S. I., H. M. S. El-Bassiouny, R. A. Hassanein, and H. A. Mostafa. 2009. Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust. J. Basic & Appl. Sci. 3(3) : 1517-1526. 

  24. Kumar, S. V., D. Lucyshyn, K. E. Jaeger, E. Alos, E. Alvey, N. P. Harberd, and P. A. Wigge. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 484(7393) : 242-245. 

  25. Li, J., H. H. Xu, W. C. Liu, X. W. Zhang, and Y. T. Lu. 2015. Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 168(4) : 1777-1791. 

  26. Lim, C. J., K. A. Yang, J. K. Hong, J. S. Choi, D. J. Yun, J. C. Hong, W. S. Chung, S. Y. Lee, M. J. Cho, and C. O. Lim. 2006. Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J. Plant Res. 119(4) : 373-383. 

  27. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ Method. Methods. 25(4) : 402-408. 

  28. Matsukura, S., J. Mizoi, T. Yoshida, D. Todaka, Y. Ito, K. Maruyama, K. Shinozaki, and K. Yamaguchi-Shinozaki. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. 2010. Mol. Genet. Genomics. 283(2) : 185-196. 

  29. Nishizawa, A., Y. Yabuta, and S. Shigeoka. 2008. Galactinol and Raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147(3) : 1251-1263. 

  30. Ohama, N., H. Sato, K. Shinozaki, and K. Yamaguchi-Shinozaki. (2017). Transcriptional regulatory network of plant heat stress. Trends Plant Sci. 22(1) : 53-65. 

  31. Ozga, J. A., H. Kaur, R. P. Savada, and D. M. Reinecke. 2017. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species. J. Exp. Bot. 68(8) : 1885-1894. 

  32. Paik, I., P. K. Kathare, J.-I. Kim, and E. Huq. 2017. Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant. 10(8) : 1035-1046. 

  33. Pearce, S., N. Kippes, A. Chen, J. M. Debernardi, and J. Dubcovsky. 2016. RNA-seq studies using wheat Phytochrome B and Phytochrome C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biology. 16 : 141. 

  34. Pillet, J., A. Egert, P. Pieri, F. Lecourieux, C. Kappel, J. Charon, E. Gomes, F. Keller, S. Delrot, and D. Lecourieux. 2012. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol. 53(10) : 1776-1792. 

  35. Sarkar, N. K., Y.-K. Kim, and A. Grover. 2009. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics. 10(1) : 393. 

  36. Schramm, F., J. Larkindale, E. Kiehlmann, A. Ganguli, G. Englich, E. Vierling, and P. Von Koskull-Doring. 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53(2) : 264-274. 

  37. Shimosaka, E. and K. Ozawa. 2015. Overexpression of coldinducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice. Breed. Sci. 65(5) : 363-371. 

  38. Shpiler, L. and A. Blum. 1991. Heat tolerance for yield and its components in different wheat cultivars. Euphytica. 51(3) : 257-263. 

  39. Thomason, K., M. A. Babar, J. E. Erickson, M. Mulvaney, C. Beecher, and G. MacDonald. 2018. Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoSONE. 13(6) : e0197919. 

  40. Wang, X., L. Hou, Y. Lu, B. Wu, X. Gong, M. Liu, J. Wang, Q. Sun, E. Vierling, and S. Xu. 2018. Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J. Exp. Bot. 69(22) : 5531-5545. 

  41. Xue, G. P., S. Sadat, J. Drenth, and C. L. McIntyre. 2014. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 65(2) : 539-557. 

  42. Young, T. E., J. Ling, C. J. Geisler-Lee, R. L. Tanguay C. Caldwell, and D. R. Gallie. 2001. Developmental and thermal regulation of the maize heat shock protein, HSP101. Plant Physiol. 127(3) : 777-791. 

  43. Zhang, N., E., Vierling, and S. J. Tonsor. 2016. Adaptive divergence in transcriptome response to heat and acclimation in Arabidopsis thaliana plants from contrasting climates. Biorxiv. 044446. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로