$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유전자 편집 기술에 의한 형질전환 가축의 생산 현황
Current Status of Production of Transgenic Livestock by Genome Editing Technology 원문보기

Journal of animal reproduction and biotechnology = 한국동물생명공학회지, v.34 no.3, 2019년, pp.148 - 156  

박다솜 (전남대학교 농업생명과학대학 동물자원학부) ,  김소섭 (광개토한우) ,  구덕본 (대구대학교 공과대학 생명공학과) ,  강만종 (전남대학교 농업생명과학대학 동물자원학부)

Abstract AI-Helper 아이콘AI-Helper

The Transgenic livestock can be useful for the production of disease-resistant animals, pigs for xenotranplantation, animal bioreactor for therapeutic recombinant proteins and disease model animals. Previously, conventional methods without using artificial nuclease-dependent DNA cleavage system were...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 총설에서는 유전자 가위를 이용하여 생산되는 유전자 적중 형질전환 가축의 현황을 살펴보고 그 방법 등에 대해서 가축에서의 응용에 대해서 기술하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
형질전환 동물이란? 형질전환 동물은 고전적으로 인위적으로 유전공학 기술을 이용 하여 동물의 유전체에 외래 유전자가 도입된 동물을 말한다. 이러한 동물은 1982년 세계 최초로 미국의 Palmiter와 Brinster 그룹에 의하여 성장호르몬 유전자가 도입된 거대생쥐가 개발된 이후 1985년에는 Hammer 그룹에 의해서 가축인 토끼, 돼지, 양에서도 사람 성장호르몬을 생산하는 형질전환 가축이 개발된 이후 오랜 기간에 걸쳐 다양한 형질전환 동물이 생산되었다.
형질전환동물의 생산 방법에는 어떤 것들이 있는가? 형질전환 동물 생산 기술은 모델 생물체에서 유전자의 기능의 검증, 질병모델 동물, 장기이식용 돼지 및 유용 단백질 생산 동물을 개발하는데 널리 이용되고 있다(Clark, 1998; Houdebine, 2000; Robl 등, 2007; Houdebine, 2009). 고전적으로 이러한 형질전환동물의 생산 방법에는 미세주입법(microinjection), 레트로바이러스 벡터법(retroviral vector), 배아줄기세포 및 체세포를 이용한 동물 복제법 등이 이용되어 왔다. 초기의 형질전환동물 생산은 주로 외래 유전자를 전핵기 수정란의 핵에 미세조작기를 이용하여 미세 주입한 후 대리모에 수정란을 이식하는 방법으로 개발되었다.
기존의 형질전환동물 생산방법의 문제점 해결한 방법은? 따라서 이러한 부분을 해결하기 위하여 특정 유전자 위치에 상동유전자 재조합에 의하여 변이된 외래 유전자를 삽입하거나, 특정 엑손을 제거하거나 또는 점돌연변이를 도입하는 유전자 적중 (gene targeting) 방법이 개발되었다(Clark 등, 2000; Piedrahita, 2000; Denning과 Priddle, 2003; Wang과 Zhou, 2003).
질의응답 정보가 도움이 되었나요?

참고문헌 (82)

  1. Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, Iacovoni JS, Daburon V, Miller KM, Jackson SP, Legube G. 2014. Transcriptionally active chromatin recruits homologous recombination at DNA double strand breaks. Nat Struct Mol Biol. 21(4):366-374. 

  2. Bao L, Chen H, Jong U, Rim C, Li W, Lin X, Zhang D, Luo Q, Cui C, Huang H, Zhang Y, Xiao L, Fu Z. 2014. Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. Sci China Life Sci. 57(2):263-268. 

  3. Bollag RJ, Waldman AS, Liskay RM. 1989. Homologous recombination in mammalian cells. Annu Rev Genet. 23:199-225. 

  4. Brandon EP, Idzerda RL, McNight GS. 1995. Targeting the mouse genome: a compendium of knockouts. Current Biology. 5(7):758-765. 

  5. Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL. 2017. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 13(2):e1006206. 

  6. Butler JR, Martens GR, Estrada JL, Reyes LM, Ladowski JM, Galli C, Perota A, Cunningham CM, Tector M, Joseph Tector A. 2016. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation. Transgenic Res. 25(5):751-759. 

  7. Byrne SM, Ortiz L, Mali P, Aach J, Church GM. 2015. Multi-kilo base homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 43(3):e21. 

  8. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC. 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol. 34(5):479-481. 

  9. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A. 109(43):17382-17387. 

  10. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39(12):e82. 

  11. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186(2):757-761. 

  12. Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, Volchkov P, Rajewsky K, Kuhn R. 2016. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygote. BMC Biotechnol. 16:4. 

  13. Clark AJ. 1998. The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins. J Mammary Gland Biol Neoplasia. 3:337-350. 

  14. Clark AJ, Burl S, Denning C, Dickinson P. 2000. Gene targeting in livestock : A preview. Transgenic Res. 9(4-5):263-275. 

  15. Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y. 2015. Gene targeting by TALEN-induced homologous recombination in goats directs production of $\beta$ -lactoglobulin-free, high-human lactoferrin milk. Sci Rep. 5:10482. 

  16. Dai Y, Vaught TD, Boone V, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL. 2002. Targeted disruption of the ${\alpha}1$ ,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 20:251-255. 

  17. Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, King T, Ritchie M, Ritchie WA, Rollo M, de Sousa P, Travers A, Wilmut I, Clark AJ. 2001. Deletion of the alpha(1,3) galactosyl transferase(GGTA1) gene and the prion protein(PrP) gene in sheep. Nat Biotechnol. 19(6):559-562. 

  18. Denning C, Priddle H. 2003. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells. Reproduction. 126:1-11. 

  19. Doetschman T, Maeda N, Smithies O. 1998. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 85:8583-8587. 

  20. Gaj T, Gersbach CA, Barbas CF 3rd. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397-395. 

  21. Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y. 2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 18(1):13. 

  22. Hai T, Teng F, Guo R, Li W, Zhou Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24(3):372-375. 

  23. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H. 2011. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A. 108(29):12013-12017. 

  24. Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamam T. 2015. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep. 5:8841. 

  25. Houdebine LM. 2000. Transgenic animal bioreactors. Transgenic Res. 9:305-320. 

  26. Houdebine LM. 2009. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis. 32:107-121. 

  27. Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA. 2015. Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Rep. 5:1109-1118. 

  28. Jasin M, Moynahan ME, Richardson C. 1996. Targeted transgenesis. Proc Natl Acad Sci U S A. 93:8804-8808. 

  29. Jayathilaka K, Sheridan SD, Bold TD, Bochenska K, Logan HL, Weichselbaum RR, Bishop DK, Connell PP. 2008. A chemical compound that stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci U S A. 105:15848-15853. 

  30. Kim YG, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 93(3):1156-1160. 

  31. Klymiuk N, Aigner B, Brem G, Wolf E. 2010. Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev. 77(3):209-221. 

  32. Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O. 1989. Germlinetransmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A. 86(22):8927-8931. 

  33. Kwon DN, Lee K, Kang MJ, Choi YJ, Park C, Whyte JJ, Brown AN, Kim JH, Samuel M, Mao J, Park KW, Murphy CN, Prather RS, Kim JH. 2013. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep. 3:1981. 

  34. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein CJ, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. 2002. Production of a-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 295:1089-1092. 

  35. Lai S, Wei S, Zhao B, Ouyang Z, Zhang Q, Fan N, Liu Z, Zhao Y, Yan Q, Zhou X, Li L, Xin J, Zeng Y, Lai L, Zou Q. 2016. Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS ONE. 11(1):e0146562. 

  36. Ledermann B. 2000. Embryonic stem cells and gene targeting. Exp Physiol. 85:603-613. 

  37. Li X, Hao F, Hu X, Wang H, Dai B, Wang X, Liang H, Cang M, Liu D. 2019. Generation of $T{\beta}4$ knock-in Cashmere goat using CRISPR/Cas9. Int J Biol Sci. 15(8):1743-1754. 

  38. Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y. 2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun. 4:2565. 

  39. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y. 2014. Generation of mastitis resistance in cows by targeting human lysozyme gene to $\beta$ -casein locus using zinc-finger nucleases. Proc Biol Sci. 281(1780):20133368. 

  40. Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N. 2014. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS One. 9(4):e95225. 

  41. Lv Q, Yuan L, Deng J, Chen M, Wang Y, Zeng J, Li Z, Lai L. 2016. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci Rep. 6:25029. 

  42. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. 2011. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 9(6):467-477. 

  43. Mao Z, Bozzella M, Seluanov A, Gorbunova V. 2008. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 7(18):2902-2906. 

  44. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of non homologous end joining. Nat Biotechnol. 33:538-542. 

  45. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ. 2000. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature. 405(6790):1066-1069. 

  46. McVey M, Lee SE. 2008. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24(11):529-538. 

  47. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C. 2014. Efficient gene knockout in goats using CRISPR/ Cas9 system. PLoS One. 9(9):e106718. 

  48. Noh EJ, Lim DS, Jeong G, Lee JS. 2009. An HDAC inhibitor, trichostatin A, induces a delay at G2/M transition, slippage of spindle checkpoint, and cell death in a transcriptiondependent manner. Biochem Biophys Res Commun. 378(3):326-331. 

  49. Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SE, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CB, Mileham A, Telugu BP, Oatley JM. 2017. Generation of germline ablated male pigs by CRISPR/ Cas9 editing of the NANOS2 gene. Sci Rep. 7:40176. 

  50. Park TS. 2019. Current strategies of genomic modification in livestock and applications in poulty. J Anim Reprod Biotechnol 34:65-69. 

  51. Petersen B. 2017. Basics of genome editing technology and its application in livestock species. Reprod Domest Anim. 3:4-13. 

  52. Piedrahita JA. 2000. Targeted modification of the domestic animal genome. Theriogenology. 53:105-116. 

  53. Pinder J, Salsman J, Dellaire G. 2015. Nuclear domain 'knockin' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res. 43(19):9379-9392. 

  54. Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, Lillico SG, Mileham AJ, McLaren DG, Whitelaw CB, Fahrenkrug SC. 2015. Genome edited sheep and cattle. Transgenic Res. 24(1):147-153. 

  55. Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M. 2017. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep. 7:42661. 

  56. Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, Paris LL, Blankenship RL, Ray CN, Miner AC, Tector M, Tector AJ. 2014. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol. 193(11):5751-5757. 

  57. Robl JM, Wang Z, Kasinathan P, Kuroiwa Y. 2007. Transgenic animal production and animal biotechnology. Theriogenology. 67:127-133. 

  58. Sakuma T, Woltjen K. 2014. Nuclease-mediated genome editing: At the front-line of functional genomics technology. Dev Growth Differ. 56:2-13. 

  59. Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 32(4):347-355. 

  60. Schwartzberg PL, Goff SP, Robertson EJ. 1989. Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science. 246:799-803. 

  61. Sedivy JM, Vogelstein B, Liber HL, Hendrickson EA, Rosmarin A. 1999. Gene targeting in human cells without isogenic DNA. Science. 283. 

  62. Shen W, Lan G, Yang X, Li L, Min L, Yang Z, Tian L, Wu X, Sun Y, Chen H, Tan J, Deng J, Pan Q. 2007. Targeting the exogenous htPAm gene on goat somatic cell beta-casein locus for transgenic goat production. Mol Reprod Dev. 74:428-434. 

  63. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. 1985. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 317(6034):230-234. 

  64. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. 2016. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. 7:10548. 

  65. Takayama K, Igai K, Hagihara Y, Hashimoto R, Hanawa M, Sakuma T, Tachibana M, Sakurai F, Yamamoto T, Mizuguchi H. 2017. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Res. 45(9):5198-5207. 

  66. Taleei R, Nikjoo H. 2013. The non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks: I. A mathematical model. Radiat Res. 179(5):530-539. 

  67. Tan W, Proudfoot C, Lillico SG, Whitelaw CB. 2016. Gene targeting, genome editing: from Dolly to editors. Transgenic Res. 25(3):273-287. 

  68. Thomas KR, Capecchi MR. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 51(3):503-512. 

  69. Thomas KR, Deng C, Capecchi MR. 1992. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol. 12:2919-2923. 

  70. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998. Embryonic stem cell lines derived from human blastocysts. Science. 282(5391):1145-1147. 

  71. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC. 2005. Highly efficient endogenous human gene correction using designed zinc finger nucleases. Nature. 435:646-651. 

  72. Wang B, Zhou J. 2003. Specific genetic modifications of domestic animals by gene targeting and animal cloning. Reprod Biol Endocrinol. 1:103. 

  73. Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y. 2015. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep. 5:13878. 

  74. Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G. 2018. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep. 8(1):7661. 

  75. Whitworth KM, Rowland RR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, Samuel MS, Lightner JE, McLaren DG, Mileham AJ, Wells KD, Prather RS. 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 34(1):20-22. 

  76. Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G. 2000. Transgenic technology in farm animals - progress and perspectives. Exp Physiol. 85:615-625. 

  77. Wu H, Wang Y, Zhang Y, Yang M Lv J, Liu J, Zhang Y. 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci U S A. 112(13):E1530-1539. 

  78. Wyman C, Kanaar R. 2006. DNA double-strand break repair: all's well that ends well. Annu Rev Genet. 40:363-383. 

  79. Yanez RJ, Porter AC. 1998. Therapeutic gene targeting. Gene Ther. 5(2):149-159. 

  80. Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen YE, Lai L. 2011. Generation of $PPAR{\gamma}$ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. 21(6):979-982. 

  81. Yang H, Wang H, Jaenisch R. 2014. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 9(8):1956-1968. 

  82. Yu S, Luo J, Song Z, Ding F, Dai Y, Li N. 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zincfinger nucleases in cattle. Cell Res. 21(11):1638-1640. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로