$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 딥러닝 기반 BIM(Building Information Modeling) 벽체 하위 유형 자동 분류 통한 정합성 검증에 관한 연구
Using Deep Learning for automated classification of wall subtypes for semantic integrity checking of Building Information Models 원문보기

Journal of KIBIM = 한국BIM학회논문집, v.9 no.4, 2019년, pp.31 - 40  

정래규 (서울과학기술대학교 건설시스템공학과) ,  구본상 (서울과학기술대학교 건설시스템공학과) ,  유영수 (서울과학기술대학교 건설시스템공학과)

Abstract AI-Helper 아이콘AI-Helper

With Building Information Modeling(BIM) becoming the de facto standard for data sharing in the AEC industry, additional needs have increased to ensure the data integrity of BIM models themselves. Although the Industry Foundation Classes provide an open and neutral data format, its generalized schema...

Keyword

표/그림 (15)

참고문헌 (21)

  1. Bazjanac, V., Kiviniemi, A. (2007). Reduction, simplification, translation and interpretation in the exchange of model data, In CIB W, 78, pp. 163-168. 

  2. Belsky, M., Sacks, R., Brilakis, I. (2016). Semantic enrichment for building information modeling, Computer Aided Civil and Infrastructure Engineering, 31(4), pp. 261-274. 

  3. Bennett, K. P., Campbell, C. (2000). Support vector machines: hype or hallelujah?, Acm Sigkdd Explorations Newsletter, 2(2), pp. 1-13. 

  4. BIMCollective, IfcOpenShell, http://ifcopenshell.org (2016) 

  5. Bloch, T., Sacks, R., (2018). Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models, Automation in Construction, 91, pp. 256-272. 

  6. Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P., (2017). Geometric deep learning: going beyond euclidean data, IEEE Signal Processing Magazine, 34(4), pp. 18-42. 

  7. Construction Specifications Institute, Omniclass, https://www.csiresources.org/practice/standards/omniclass (2017) 

  8. Eastman, C. M., Jeong, Y. S., Sacks, R., Kaner, I. (2009). Exchange model and exchange object concepts for implementation of national BIM standards, Journal of Computing in Civil Engineering, 24(1), pp. 25-34. 

  9. Kim, H., Choi, J., Kim, H., Kim, I. (2013). The Development of Data Model for Open BIM-Based Schematic Estimates - Focused on Construction Type for Actual Cost of Public Projects, Journal of the Architectural Institute of Korea Planning and Design, 29(3), pp. 61-70. 

  10. Kim, J., Moon, J., Joo, K. (2012). Proposal of roadmap and basic research of Information model standards for application on the BIM on civil engineering, ournal of Korea Academia-Industrial cooperation Society, 13(12), pp. 6176-6186. 

  11. Koo, B., La, S., Cho, N. W., Yu, Y. (2019). Using support vector machines to classify building elements for checking the semantic integrity of building information models, Automation in Construction, pp. 98, 183-194. 

  12. Ma, L., Sacks, R. Kattell, U. (2017), Building Model Object Classification for Semantic Enrichment Using Geometric Features and Pairwise Spatial Relations, in 2017 Leand and Computing in Construction Congress(LC3), pp. 373-380. 

  13. Maturana, D., Scherer, S. (2015). Voxnet: A 3d convolutional neural network for real-time object recognition, In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922-928. 

  14. Muller, M. P., Tomlinson, G., Marrie, T. J., Tang, P., McGeer, A., Low, D. E., Gold, W. L. (2005). Can routine laboratory tests discriminate between severe acute respiratory syndrome and other causes of community-acquired pneumonia?, Clinical infectious diseases, 40(8), pp. 1079-1086. 

  15. National BIM Library, NBS, https://www.nationalbimlibrary.com/en/ (2017) 

  16. Nepal, M. P., Staub-French, S., Pottinger, R., Zhang, J. (2012). Ontology-based feature modeling for construction information extraction from a building information model, Journal of Computing in Civil Engineering, 27(5), pp. 555-569. 

  17. Pauwels, P., Terkaj, W. (2016). EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology, Automation in Construction, 63, pp. 100-133. 

  18. Qi, C. R., Su, H., Mo, K., Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652-660. 

  19. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shape recognition, In Proceedings of the IEEE international conference on computer vision, pp. 945-953. 

  20. Venugopal, M., Eastman, C. M., Sacks, R., Teizer, J. (2012). Semantics of model views for information exchanges using the industry foundation class schema, Advanced engineering informatics, pp. 26(2), 411-428. 

  21. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1912-1920. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로