최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of KIBIM = 한국BIM학회논문집, v.9 no.4, 2019년, pp.31 - 40
정래규 (서울과학기술대학교 건설시스템공학과) , 구본상 (서울과학기술대학교 건설시스템공학과) , 유영수 (서울과학기술대학교 건설시스템공학과)
With Building Information Modeling(BIM) becoming the de facto standard for data sharing in the AEC industry, additional needs have increased to ensure the data integrity of BIM models themselves. Although the Industry Foundation Classes provide an open and neutral data format, its generalized schema...
Bazjanac, V., Kiviniemi, A. (2007). Reduction, simplification, translation and interpretation in the exchange of model data, In CIB W, 78, pp. 163-168.
Belsky, M., Sacks, R., Brilakis, I. (2016). Semantic enrichment for building information modeling, Computer Aided Civil and Infrastructure Engineering, 31(4), pp. 261-274.
Bennett, K. P., Campbell, C. (2000). Support vector machines: hype or hallelujah?, Acm Sigkdd Explorations Newsletter, 2(2), pp. 1-13.
BIMCollective, IfcOpenShell, http://ifcopenshell.org (2016)
Bloch, T., Sacks, R., (2018). Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models, Automation in Construction, 91, pp. 256-272.
Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P., (2017). Geometric deep learning: going beyond euclidean data, IEEE Signal Processing Magazine, 34(4), pp. 18-42.
Construction Specifications Institute, Omniclass, https://www.csiresources.org/practice/standards/omniclass (2017)
Eastman, C. M., Jeong, Y. S., Sacks, R., Kaner, I. (2009). Exchange model and exchange object concepts for implementation of national BIM standards, Journal of Computing in Civil Engineering, 24(1), pp. 25-34.
Koo, B., La, S., Cho, N. W., Yu, Y. (2019). Using support vector machines to classify building elements for checking the semantic integrity of building information models, Automation in Construction, pp. 98, 183-194.
Ma, L., Sacks, R. Kattell, U. (2017), Building Model Object Classification for Semantic Enrichment Using Geometric Features and Pairwise Spatial Relations, in 2017 Leand and Computing in Construction Congress(LC3), pp. 373-380.
Maturana, D., Scherer, S. (2015). Voxnet: A 3d convolutional neural network for real-time object recognition, In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922-928.
Muller, M. P., Tomlinson, G., Marrie, T. J., Tang, P., McGeer, A., Low, D. E., Gold, W. L. (2005). Can routine laboratory tests discriminate between severe acute respiratory syndrome and other causes of community-acquired pneumonia?, Clinical infectious diseases, 40(8), pp. 1079-1086.
National BIM Library, NBS, https://www.nationalbimlibrary.com/en/ (2017)
Nepal, M. P., Staub-French, S., Pottinger, R., Zhang, J. (2012). Ontology-based feature modeling for construction information extraction from a building information model, Journal of Computing in Civil Engineering, 27(5), pp. 555-569.
Pauwels, P., Terkaj, W. (2016). EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcOWL ontology, Automation in Construction, 63, pp. 100-133.
Qi, C. R., Su, H., Mo, K., Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652-660.
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shape recognition, In Proceedings of the IEEE international conference on computer vision, pp. 945-953.
Venugopal, M., Eastman, C. M., Sacks, R., Teizer, J. (2012). Semantics of model views for information exchanges using the industry foundation class schema, Advanced engineering informatics, pp. 26(2), 411-428.
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1912-1920.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.