$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

연료전지용 고분자 전해질 복합막의 최근 발전 동향
Recent Advances in Composite Polymer Electrolyte Membranes for Fuel Cell 원문보기

공업화학 = Applied chemistry for engineering, v.30 no.1, 2019년, pp.1 - 10  

비자야레크쉬미 비자야쿠마르 (경상대학교 나노신소재융합공학과, 공학연구원) ,  손태양 (경상대학교 나노신소재융합공학과, 공학연구원) ,  남상용 (경상대학교 나노신소재융합공학과, 공학연구원)

Abstract AI-Helper 아이콘AI-Helper

Composite polymer electrolyte membranes based on porous supports have been recognized as an alternative for fuel cell applications since it can provide both mechanical as well as electrochemical stabilities. This mini-review highlights recent advances in supported composite polymer electrolyte membr...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The main roles of the support in the composite polymer electrolyte are: (i) to reinforcing the membrane, which leads to better mechanical, dimensional and thermal stabilities and (ii) reduce the thickness of the membranes and improve ion conductivity. The purpose of this review is, to sum up the recent progress on PEMs based on pore filling and nanofibrous support composites.
  • Ionically conductive polymer gel with porous matrix or electrospun mat support may efficiently overcome the limitations associated with the state of the art perfluorosulfonic acid based membranes and enhance mechanical strength, conductivity, stability, selectivity and durability. This review gives an overview of various efforts that have been made during the last five years on porous supported polymer electrolyte membranes. Table 1 shows a summarized report on the work performed on various membranes.
본문요약 정보가 도움이 되었나요?

참고문헌 (46)

  1. C. Boaretti, L. Pasquini, R. Sood, S. Giancola, A. Donnadio, M. Roso, M. Modesti, and S. Cavaliere, Mechanically stable nanofibrous $sPEEK/Aquivion^{(R)}$ composite membranes for fuel cell applications, J. Membr. Sci., 545, 66-74 (2018). 

  2. Y. Oshiba, J. Tomatsu, and T. Yamaguchi, Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells, J. Power Sources, 394, 67-73 (2018). 

  3. G. C. Abuin, E. A. Franceschini, P. Nonjola, M. K. Mathe, M. Modibedi, and H. R. Corti, A high selectivity quaternized polysulfone membrane for alkaline direct methanol fuel cells, J. Power Sources, 279, 450-459 (2015). 

  4. Y. He, H. Zhang, Y. Li, J. Wang, L. Ma, W. Zhang, and J. Liu, Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix, J. Mater. Chem. A, 3, 21832-21841 (2015). 

  5. D. J. Kim and S. Y. Nam, Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell, Membr. J., 22, 155-170 (2012). 

  6. S. Shi, A. Z. Weber, and A. Kusoglu, Structure/property relationship of Nafion XL composite membranes, J. Membr. Sci., 516, 123-134 (2016). 

  7. H. W. Zhang, D. Z. Chen, Y. Xianze, and S. B. Yin, Anion exchange membranes for fuel cells: Synthesis strategies, properties and perspectives, Fuel Cells, 15, 761-780 (2015). 

  8. Z. Zakaria, S. K. Kamarudin, and S. N. Timmiati, Membranes for direct ethanol fuel cells: An overview, Appl. Energy, 163, 334-342 (2016). 

  9. C. H. Park, S. Y. Nam, and Y. T. Hong, Molecular dynamics (MD) study of proton exchange membranes for fuel cells, Membr. J., 26, 329-336 (2016). 

  10. Z. Gao, G. Jiang, and P. Ma, Preparation and performance as PEM of sulfonated pre-oxidized nanofiber/SPEEK composite membrane, Fibers Polym., 18, 1025-1030 (2017). 

  11. S. Y. Lee, H. Kim, S. Y. Nam, and C. H. Park, Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells, Membr. J., 26, 1-13 (2016). 

  12. N. Kang, J. Shin, T. S. Hwang, and Y. S. Lee, A facile method for the preparation of poly(vinylidene fluoride) membranes filled with cross-linked sulfonated polystyrene, React. Funct. Polym., 99, 42-48 (2016). 

  13. D. J. Kim, H. Y. Hwang, H. J. Kim, and S. Y. Nam, Preparation and characterization of polysulfone substrate for reinforced composite membrane fuel cell membrane, Membr. J., 19, 63-71 (2009). 

  14. D. J. Kim, H. Y. Hwang, and S. Y. Nam, Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications, Membr. J., 21, 389-397 (2011). 

  15. T. Y. Son, T. H. Ko, J. H. Kim, J. U. Hong, and S. Y. Nam, Preparation and characterization of chitosan membranes cross-linked using poly(2,6-dimethyl-1,4-phenylene oxide) polymer and chitosan, Membr. J., 28, 205-213 (2018). 

  16. T. Y. Son, J. W. Jo, J. H. Kim, T. H. Kim, E. Tocci., and S. Y. Nam, Preparation and gas characterization of poly(phenylene oxide) containing imidazolium, Membr. J., 27, 528-535 (2017). 

  17. M. S. Lee, H. G. Kang, J. D. Jeon, Y. W. Choi, and Y. G. Yoon, A novel amphoteric ion-exchange membrane prepared by the pore-filling technique for vanadium redox flow batteries, RSC Adv., 6, 63023-63029 (2016). 

  18. S. Molla and V. Compan, Nanocomposite SPEEK-based membranes for Direct Methanol Fuel Cells at intermediate temperatures, J. Membr. Sci., 492, 123-136 (2015). 

  19. J. H. Won, H. J. Lee, J. M. Lim, J. H. Kim, Y. T. Hong, and S. Y. Lee, Anomalous behavior of proton transport and dimensional stability of sulfonated poly(arylene ether sulfone) nonwoven/silicate composite proton exchange membrane with dual phase co-continuous morphology, J. Membr. Sci., 450, 235-241 (2014). 

  20. S. Jang, Y. G. Yoon, Y. S. Lee, and Y. W. Choi, One-step fab-rication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells, J. Membr. Sci., 563, 896-902 (2018). 

  21. K. Kim, S. W. Choi, J. O. Park, S. K. Kim, M. W. Lim, K. H Kim, T. Ko, and J. C. Lee, Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures, J. Membr. Sci., 536, 76-85 (2017). 

  22. B. Y. Wang, C. K. Tseng, C. M. Shih, Y. L. Pai, H. P. Kuo, and S. J. Lue, Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styrene-ethylene/butylene-styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells, J. Membr. Sci., 464, 43-54 (2014). 

  23. S. Ichimura, Y. Sota, J. Ishikawa, Y. Imanishi, K. Kitamura, S. Tsujii, and T. Yamaguchi, Poly(p-phenylene sulfonic acid-ran-2,5-benzophenone) pore-filling membranes with highly packed acid structure and their polymer electrolyte fuel cell performances, Int. J. Hydrogen Energy, 41, 21461-21469 (2016). 

  24. A. Le Mong, S. Yang, and D. Kim, Pore-filling polymer electrolyte membrane based on poly(arylene ether ketone) for enhanced dimensional stability and reduced methanol permeability, J. Membr. Sci., 543, 133-142 (2017). 

  25. K. Kim, S. K. Kim, J. O. Park, S. W. Choi, K. H. Kim, T. Ko, C. Pak, and J. C. Lee, Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells, J. Membr. Sci., 537, 11-21 (2017). 

  26. E. van de Ven, A. Chairuna, G. Merle, S. P. Benito, Z. Borneman, and K. Nijmeijer, Ionic liquid doped polybenzimidazole membranes for high temperature proton exchange membrane fuel cell applications, J. Power Sources, 222, 202-209 (2013). 

  27. J. H. Lee, J. Y. Lee, J. H. Kim, J. Joo, S. Maurya, M. Choun, J. Lee, and S. H. Moon, SPPO pore-filled composite membranes with electrically aligned ion channels via a lab-scale continuous caster for fuel cells: An optimal DC electric field strength-IEC relationship, J. Membr. Sci., 501, 15-23 (2016). 

  28. S. Subianto, M. Pica, M. Casciola, P. Cojocaru, L. Merlo, G. Hards, and D. J. Jones, Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells, J. Power Sources, 233, 216-230 (2013). 

  29. L. Wang, J. Zhu, J. Zheng, S. Zhang, and L. Dou, Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains, RSC Adv., 4, 25195-25200 (2014). 

  30. H. Zhang, Y. He, J. Zhang, L. Ma, Y. Li, and J. Wang, Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer, J. Membr. Sci., 505, 108-118 (2016). 

  31. G. M. Liao, P. C. Li, J. S. Lin, W. T. Ma, B. C. Yu, H. Y. Li, Y. L. Liu, C. C. Yang, C. M. Shih, and S. J. Lue, Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes, J. Power Sources, 304, 136-145 (2016). 

  32. M. Gummalla, Z. Yang, P. Pintauro, K. M. Lee, and R. Wycisk, Porous nanofiber mats to reinforce proton conducting membranes for PEM applications, U.S. Patent, 9716285B2 (2017). 

  33. C. Lee, S. M. Jo, J. Choi, K. Y. Baek, Y. B. Truong, I. L. Kyratzis, and Y. G. Shul, $SiO_{2}$ /sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells, J. Mater. Sci., 48, 3665-3671 (2013). 

  34. Y. C. Cao, C. Xu,, L. Zou, K. Scott, and J. Liu, A polytetrafluoroethylene porous membrane and dimethylhexadecylamine quaternized poly(vinyl benzyl chloride) composite membrane for intermediate temperature fuel cells, J. Power Sources, 294, 691-695 (2015). 

  35. J. Wang, Y. He, L. Zhao, Y. Li, S. Cao, B. Zhang, and H. Zhang, Enhanced proton conductivities of nanofibrous composite membranes enabled by acid-base pairs under hydrated and anhydrous conditions, J. Membr. Sci., 482, 1-12 (2015). 

  36. X. Xu, L. Li, H. Wang, X. Li, and X. Zhuang, Solution blown sulfonated poly(ether ether ketone) nanofiber-Nafion composite membranes for proton exchange membrane fuel cells, RSC Adv., 5, 4934-4940 (2015). 

  37. X. Gong, G. He, Y. Wu, S. Zhang, B. Chen, Y. Dai, and X. Wu, Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly(phthalazinone ether sulfone ketone) proton exchange membranes, J. Power Sources, 358, 134-141 (2017). 

  38. S. Zhang, G. He, X. Gong, X. Zhu, X. Wu, X. Sun, X. Zhao, and H. Li, Electrospun nanofiber enhanced sulfonated poly(phthalazinone ether sulfone ketone) composite proton exchange membranes, J. Membr. Sci., 493, 58-65 (2015). 

  39. C. Klose, M. Breitwieser, S. Vierrath, M. Klingele, H. Cho, A. Buchler, J. Kerres, and S. Thiele, Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes, J. Power Sources, 361, 237-242 (2017). 

  40. J. Li, K. Fan, W. Cai, L. Ma, G. Xu, S. Xu, L. Ma, and H. Cheng, An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application, J. Power Sources, 332, 37-41 (2016). 

  41. E. L. Cussler, S. E. Hughes, W. J. Ward, and R. Aris, Performance dependence of swelling-filling treated Nafion membrane on nano-structure of macromolecular filler, J. Membr. Sci., 534, 68-72 (2017). 

  42. I. Shabani, M. M. Hasani-Sadrabadi, V. Haddadi-Asl, and M. Soleimani, Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications, J. Membr. Sci., 368, 233-240 (2011). 

  43. L. C. Jheng, W. J. Y. Chang, S. L. C. Hsu, and P. Y. Cheng, Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells, J. Power Sources, 323, 57-66 (2016). 

  44. H. Kang, M. Lee, W. Sim, T. Yang, and K. Shin, Effect of number of cross-linkable sites on proton conducting, pore-filling membranes, J. Membr. Sci., 460, 178-184 (2014). 

  45. A. Eguizabal, M. Sgroi, D. Pullini, E. Ferain, and M. P. Pina, Nanoporous PBI membranes by track etching for high temperature PEMs, J. Membr. Sci., 454, 243-252 (2014). 

  46. H. Wang, X. Li, X. Zhuang, B. Cheng, W. Wang, W. Kang, L. Shi, and H. Li, Modification of Nafion membrane with biofunctional $SiO_{2}$ nanofiber for proton exchange membrane fuel cells, J. Power Sources, 340, 201-209 (2017). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로