$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

GIS 공간분석 기술을 이용한 국내 고병원성 조류인플루엔자 발생 고위험지역 분류
A GIS-Based Spatial Analysis for Enhancing Classification of the Vulnerable Geographical Region of Highly Pathogenic Avian Influenza Outbreak in Korea 원문보기

Journal of veterinary clinics = 한국임상수의학회지, v.36 no.1, 2019년, pp.15 - 22  

박선일 (강원대학교 수의과대학 및 동물의학종합연구소) ,  정원화 (국립환경과학원 환경보건연구부) ,  이광녕 (농림축산검역본부 역학조사과)

Abstract AI-Helper 아이콘AI-Helper

Highly pathogenic avian influenza (HPAI) is among the top infectious disease priorities in Korea and the leading cause of economic loss in relevant poultry industry. An understanding of the spatial epidemiology of HPAI outbreak is essential in assessing and managing the risk of the infection. Though...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이러한 높은 유병률과 전술한 오리류의 역학적 특성을 감안할 때 야생조류에 기인하여 HPAI 바이러스가 국내로 유입될 개연성이 상존하고 있어 국내 HPAI 유입과 확산 가능성을 최소화하기 위해서는 발생 고위험 지역을 대상으로 목표 감시할동(targeted surveillance) 시스템을 적용함으로써 선제적 예찰을 강화하여 발생 위험을 조기에 차단하는 것이 중요하다. 따라서 본 연구는 HPAI 발생 위험요인과 관련된 공간자료(spatial data)를 통합하여 위험 예측모형을 구축하고, 발생 고위험 지역을 추정하기 위하여 수행되었다.

가설 설정

  • 커널밀도(kernel density)는 점(point)으로 표현되는 사상의 공간적 밀도를 통계적으로 추정하는 방법으로 한 점을 중심으로 주변에 다른 점들이 많이 분포할수록 해당 점이 위치한 지점에서의 공간적 밀도는 증가한다(20). 공간적 밀도추정에 있어서 주변을 정의하는 지리적 범위를 나타내는 탐색 반경(bandwidth, search radius)을 넓게 설정할수록 점들 간 영향력은 지리적으로 확장된다. 본 연구에서는 우리나라 252개 시군구의 평균 면적에 제곱근을 적용하여 시군구 간 평균거리를 계산하였으며(36), 탐색반경 30 km를 적용하여 분석한 결과를 ArcGIS 10.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
커널밀도란? 커널밀도(kernel density)는 점(point)으로 표현되는 사상의 공간적 밀도를 통계적으로 추정하는 방법으로 한 점을 중심으로 주변에 다른 점들이 많이 분포할수록 해당 점이 위치 한 지점에서의 공간적 밀도는 증가한다(20). 공간적 밀도추정에 있어서 주변을 정의하는 지리적 범위를 나타내는 탐색 반경(bandwidth, search radius)을 넓게 설정할수록 점들 간 영향력은 지리적으로 확장된다.
전 세계적으로 고병원성 조류인플루엔자의 발생 양상은 어떠한가? 2003년 이후 고병원성 조류인플루엔자(highly pathogenic avian influenza, HPAI)는 우리나라를 비롯한 아시아, 유럽, 아프리카의 가금류와 야생조류 집단에서 광범위한 유행을 초래하였으며, 이후 일부 국가에서는 산발적이고 국지적인 양 상으로 지속적으로 발생하였다(1,10,22,23). 국내에서는 2003- 2018년 2월까지 총 7회(2003-2004, 2006-2007, 2008, 2010- 2011, 2014-2016.
국내에서 유행한 고병원성 조류인플루엔자의 최초 유입원이 무엇인가? 11-2018.2)의 유행이 있었으며, 역학조사 결과 해외에서 유입된 철새 (migratory bird)가 최초 유입원으로 추정되었다. HPAI 바이러스의 장거리 전파와 야생조류의 원인적 연관성에 대해서는 여전히 논란이 있지만 야생조류는 AI 바이러스의 자연숙주이며(2,13,30), 동남아시아, 러시아, 유럽 및 아프리카 지역에서 HPAI 전파의 주요 원인으로 야생조류의 이동과 가금류 생축의 이동 간 역학적 관련성에 대한 많은 증거가 보고 되어 있고, 특히 오리과(Anatidae)의 조류는 감염되어도 무증상으로 장거리를 이동하면서 바이러스를 배출할 수 있다는 점에서 HPAI 바이러스의 장거리 전파와 특히 오리류 물새 간 통계적 연관성은 가장 높은 것으로 알려져 있다(2,7,9,12, 18,26,33).
질의응답 정보가 도움이 되었나요?

참고문헌 (36)

  1. Alexander D. Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002-2006. Avian Diseases 2007; 51: 161-166. 

  2. Boyce WM, Sandrock C, Kreuder-Johnson C, Kelly T, Cardona C. Avian influenza viruses in wild birds: a moving target. Comp Immunol Microbiol Infect Dis 2009; 32: 275-286. 

  3. Caron A, Gaidet N, de Garine-Wichatitsky M, Morand S, Cameron EZ. Evolutionary biology, community ecology and avian influenza research. Infect Genet Evol 2009; 9: 298-303. 

  4. Chen R, Holmes EC. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds. Virology 2009; 383: 156-161. 

  5. De Marco MA, Valentini A, Foni E, Savarese MC, Cotti C, Chiapponi C, Raffini E, Donatelli I, Delogu M. Is there a relation between genetic or social groups of mallard ducks and the circulation of low pathogenic avian influenza viruses? Vet Microbiol 2014; 170: 418-424. 

  6. Ducatez MF, Olinger CM, Owoade AA, De Landtsheer S, Ammerlaan W, Niesters HG, Osterhaus AD, Fouchier RA, Muller CP. Avian flu: multiple introductions of H5N1 in Nigeria. Nature 2006; 442: 37. 

  7. East IJ, Hamilton S, Sharp LA, Garner MG. Identifying areas of Australia at risk for H5N1 avian influenza infection from exposure to nomadic waterfowl moving throughout the Australo-Papuan region. Geospat Health 2008; 3: 17-27. 

  8. Galbraith CA, Jones T, Kirby J, Mundkur T. A review of migratory bird flyways and priorities for management. UNEP/CMS Secretariat, Bonn, Germany. CMS Technical Series No. 27. 2014. 

  9. Gilbert M, Xiao X, Domenech J, Lubroth J, Martin V, Slingenbergh J. Anatidae migration in the western Palearctic and spread of highly pathogenic avian influenza H5NI virus. Emerg Infect Dis 2006; 12: 1650-1656. 

  10. Gilbert M, Newman SH, Takekawa JY, Loth L, Biradar C, Prosser DJ, Balachandran S, Subba Rao MV, Mundkur T, Yan B, Xing Z, Hou Y, Batbayar N, Natsagdorj T, Hogerwerf L, Slingenbergh J, Xiao X. Flying over an infected landscape: distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl. Ecohealth 2010; 7: 448-458. 

  11. Githiru M, Lens L. Annual survival and turnover rates of an Afrotropical robin in a fragmented forest. Biodiv Conserv 2006; 15: 3315-3327. 

  12. Groepper SR, DeLiberto TJ, Vrtiska MP, Pedersen K, Swafford SR, Hygnstrom SE. Avian influenza virus prevalence in migratory waterfowl in the United States, 2007-2009. Avian Dis 2014; 58: 531-540. 

  13. Hill NJ, Takekawa JY, Cardona CJ, Meixell BW, Ackerman JT, Runstadler JA, Boyce WM. Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: a flyway perspective. Vector Borne Zoonotic Dis 2012; 12: 243-253. 

  14. Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, Seiler P, Govorkova EA, Krauss S, Scholtissek C, Puthavathana P, Buranathai C, Nguyen TD, Long HT, Naipospos TS, Chen H, Ellis TM, Guan Y, Peiris JS, Webster RG. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia. Proc Natl Acad Sci USA 2005; 102: 10682-10687. 

  15. Kalthoff D, Breithaupt A, Teifke JP, Globig A, Harder T, Mettenleiter TC, Beer M. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerg Infect Dis 2008; 14: 1267-1270. 

  16. Kang HM, Jeong OM, Kim MC, Kwon JS, Paek MR, Choi JG, Lee EK, Kim YJ, Kwon JH, Lee YJ. Surveillance of avian influenza virus in wild bird fecal samples from South Korea, 2003-2008. J Wildl Dis 2010; 46: 878-888. 

  17. Kida H, Yanagawa R, Matsuoka Y. Duck influenza lacking evidence of disease signs and immune response. Infect Immun 1980; 30: 547-553. 

  18. Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P. Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci USA 2006; 103: 19368-19373. 

  19. Kim JK, Negovetich NJ, Forrest HL, Webster RG. Ducks: the "Trojan horses" of H5N1 influenza. Influenza Other Respir Viruses 2009; 3: 121-128. 

  20. Kim KW, Kim ET, Lee GJ, Lee KN, Jheong WH, Pak SI. Spatial significance hotspot mapping for exploring spatial pattern of 2014-2015 highly pathogenic avian influenza outbreaks in Korea. J Prev Vet Med 2017; 41: 137-142. 

  21. Lee EK, Kang HM, Song BM, Lee YN, Heo GB, Lee HS, Lee YJ, Kim JH. Surveillance of avian influenza viruses in South Korea between 2012 and 2014. Virol J 2017; 14: 54. 

  22. Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT, Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Webster RG, Peiris JS. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004; 430: 209-213. 

  23. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 2005; 309: 1206. 

  24. Montalvo-Corral M, Lopez-Robles G, Hernandez J. Avian influenza survey in migrating waterfowl in Sonora, Mexico. Transbound Emerg Dis 2011; 58: 63-68. 

  25. Munster VJ, Fouchier RA. Avian influenza virus: of virus and bird ecology. Vaccine 2009; 27: 6340-6344. 

  26. Muzyka D, Pantin-Jackwood M, Spackman E, Smith D, Rula O, Muzyka N, Stegniy B. Isolation and Genetic Characterization of Avian Influenza Viruses Isolated from Wild Birds in the Azov-Black Sea Region of Ukraine (2001-2012). Avian Dis 2016; 60: 365-377. 

  27. NBR. National Institute of Biological Resources. 2015-2016 Winter waterbird census of Korea. 2016. 

  28. Normile D. Avian influenza. Potentially more lethal variant hits migratory birds in China. Science 2005; 309: 231. 

  29. Starick E, Beer M, Hoffmann B, Staubach C, Werner O, Globig A, Strebelow G, Grund C, Durban M, Conraths FJ, Mettenleiter T, Harder T. Phylogenetic analyses of highly pathogenic avian influenza virus isolates from Germany in 2006 and 2007 suggest at least three separate introductions of H5N1 virus. Vet Microbiol 2008; 128: 243-252. 

  30. Sturm-Ramirez KM, Hulse-Post DJ, Govorkova EA, Humberd J, Seiler P, Puthavathana P, Buranathai C, Nguyen TD, Chaisingh A, Long HT, Naipospos TS, Chen H, Ellis TM, Guan Y, Peiris JS, Webster RG. Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia? J Virol 2005; 79: 11269-11279. 

  31. Takekawa JY, Newman SH, Xiao X, Prosser DJ, Spragens KA, Palm EC, Yan B, Li T, Lei F, Zhao D, Douglas DC, Muzaffar SB, Ji W. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis 2010; 54: 466-476. 

  32. Tian G, Zhang S, Li Y, Bu Z, Liu P, Zhou J, Li C, Shi J, Yu K, Chen H. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 2005; 341: 153-162. 

  33. Ward MP, Maftei DN, Apostu CL, Suru AR. Association between outbreaks of highly pathogenic avian influenza subtype H5N1 and migratory waterfowl (family Anatidae) populations. Zoonoses Public Health 2009; 56: 1-9. 

  34. Wei W, Yuan-Yuan J, Ci Y, Ahan A, Ming-Qin C. Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using geographically weighted regression model. BMC Public Health 2016; 16: 1058. 

  35. Wibawa H, Bingham J, Nuradji H, Lowther S, Payne J, Harper J, Junaidi A, Middleton D, Meers J. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding. PLoS One 2014; 9: e83417. 

  36. Yamada I, Rogerson PA, Lee G. GeoSurveillance: a GIS-based system for the detection and monitoring of spatial clusters. J Geogr Syst 2009; 11: 155-173. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로