$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 인공신경망 모델을 이용한 냉동기 및 공조기 최적 기동/정지 제어
Artificial Neural Network Models for Optimal Start and Stop of Chiller and AHU

大韓建築學會論文集. Journal of the architectural institute of korea. 構造系, v.35 no.2 = no.364, 2019년, pp.45 - 52  

박성호 (성균관대학교 미래도시융합공학과) ,  안기언 (서울대학교) ,  황승호 (SKT Energy Solution 개발팀) ,  최선규 (SKT Energy ICT 사업1팀) ,  박철수 (서울대학교 건축학과)

Abstract AI-Helper 아이콘AI-Helper

BEMS(Building Energy Management Systems) have been applied to office buildings and collect relevant building energy data, e.g. temperatures, mass flow rates and energy consumptions of building mechanical systems and indoor spaces. The aforementioned measured data can be beneficially utilized for dev...

주제어

참고문헌 (25)

  1. Ahn, K. U., Kim, D. W., Kim, Y. J., & Park, C. S. (2016). Development of an Gaussian Process Model using a Data Filtering Method. Journal of the architectural institute of Korea planning & design, 32(4), 97-105. 

  2. Afram, A., & Janabi-Sharifi, F. (2014). Review of modeling methods for HVAC systems. Applied Thermal Engineering, 67(1-2), 507-519. 

  3. Ansett, M. (1993). Application of neural networking models to predict energy use. ASHRAE transactions, 99(1), 505-517. 

  4. Esen, H., Inalli, M., Sengur, A., & Esen, M. (2008). Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing. International Journal of Thermal Sciences, 47(4), 431-441. 

  5. Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier. 

  6. Javed, A., Larijani, H., Ahmadinia, A., & Emmanuel, R. (2014). Comparison of the robustness of RNN, MPC and ANN controller for residential heating system. Big Data and Cloud Computing (BdCloud), IEEE Fourth International Conference on 2014, 604-611. IEEE. 

  7. Jovanovic, R. Z., Sretenovic, A. A., & Zivkovic, B. D. (2015). Ensemble of various neural networks for prediction of heating energy consumption. Energy and Buildings, 94, 189-199. 

  8. Kamar, H. M., Ahmad, R., Kamsah, N. B., & Mustafa, A. F. M. (2013). Artificial neural networks for automotive air-conditioning systems performance prediction. Applied Thermal Engineering, 50(1), 63-70. 

  9. Kim, Y. M., Ahn, K. U., & Park, C. S. (2016). Issues of Application of Machine Learning Models for Virtual and Real-Life Buildings. Sustainability, 8(6), 543. 

  10. Lu, Y., Wang, S., Sun, Y., & Yan, C. (2015). Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming. Applied Energy, 147, 49-58. 

  11. Nassif, N. (2014, June). Modeling and optimization of HVAC systems using artificial neural network and genetic algorithm. Building Simulation, 7(3), 237-245. Springer Berlin Heidelberg. 

  12. Nishiguchi, J., Konda, T., & Dazai, R. (2010). Data-driven optimal control for building energy conservation. Proceedings of SICE Annual Conference on 2010, 116-120. 

  13. Park, S., Ahn, K. U., Hwang, S., Choi, S., & Park, C. S. (2017). Machine Learning Model for a Turbo Chiller and Validity Check of the Model by Gaussian Mixture Model. 2017 Autumn Annual Conference of Architectural Institute of Korea, 37(2), 550-551 

  14. Park, S., Ahn, K. U., Hwang, S., Choi, S., & Park, C. S. (2018). Determination of optimal start/stop time of a chiller using machine learning. 2018 Autumn Annual Conference of Architectural Institute of Korea, 38(2), 297-298. 

  15. Park, S., Ahn, K. U., Hwang, S., Choi, S., & Park, C. S. (2019). Machine learning vs. hybrid machine learning model for optimal operation of a chiller. Science and Technology for the Built Environment, 1-12. 

  16. Ra, S. J., Shin, H. S., Suh, W. J., Chu, H. G., Park, C. S. (2017). Five Machine Learning Models for HVAC Systems in an Existing Office Building. Journal of the architectural institute of Korea planning & design, 33(10), 69-78. 

  17. Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, 1352-1372. 

  18. Solomatine, D. P., & Ostfeld, A. (2008). Data-driven modelling: some past experiences and new approaches. Journal of hydroinformatics, 10(1), 3-22. 

  19. Sun, Y., Wang, S., & Huang, G. (2010). Model-based optimal start control strategy for multi-chiller plants in commercial buildings. Building Services Engineering Research and Technology, 31(2), 113-129. 

  20. Sahin, A. S. (2011). Performance analysis of single-stage refrigeration system with internal heat exchanger using neural network and neuro-fuzzy. Renewable energy, 36(10), 2747-2752. 

  21. Shin, H. S., & Park, C. S. (2017). Development of a Machine Learning Model for a Chiller using Random Forest Algorithm and Data Pre-processing. Journal of the architectural institute of Korea planning & design, 33(9), 67-74. 

  22. Suh, W. J., & Park, C. S. (2016). Room air Temperature Prediction Model using Genetic Programming and BEMS Data. Journal of the architectural institute of Korea planning & design, 32(6), 105-112. 

  23. Sun, W., Hu, P., Lei, F., Zhu, N., & Jiang, Z. (2015). Case study of performance evaluation of ground source heat pump system based on ANN and ANFIS models. Applied Thermal Engineering, 87, 586-594. 

  24. Vaghefi, S. A., Jafari, M. A., Zhu, J., Brouwer, J., & Lu, Y. (2016). A hybrid physics-based and data driven approach to optimal control of building cooling/heating systems. IEEE Transactions on Automation Science and Engineering, 13(2), 600-610. 

  25. Yang, I. H., Yeo, M. S., & Kim, K. W. (2003). Application of artificial neural network to predict the optimal start time for heating system in building. Energy Conversion and Management, 44(17), 2791-2809. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로