$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

천연물 유래의 반려동물 항바이러스활성물질 연구 동향
Research Trend of Antiviral Natural Products for Companion Animal 원문보기

생약학회지, v.50 no.1, 2019년, pp.1 - 10  

강병구 (충남대학교 약학대학) ,  양서영 (충남대학교 약학대학) ,  김영호 (충남대학교 약학대학)

Abstract AI-Helper 아이콘AI-Helper

Recently, companion animal culture has grown rapidly and mature, raising interest in preventing and treating animal diseases. In particular, viral infection was a serious threat to companion animal health because there was no proper antiviral drugs. Synthetic antiviral drugs have limitations such as...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이에 본 종설에서는 반려동물 중 가장 많은 비중을 차지하고 있는 개와 고양이에게 치명적인 질병을 유발하는 바이러스 즉, canine distemper virus(CDV), canine parvovirus(CPV), feline calicivirus(FCV)에 대하여 항바이러스 활성을 갖는 천연물에 대한 연구들을 조사함으로써 반려동물을 위한 새로운 항바이러스제 개발에 기여하고자 한다.

가설 설정

  • p>바이러스는 인간의 건강을 위협하는 주요 병원체 중 하나이며 이는 동물 및 식물에 있어서도 예외가 아니다.1) 바이러스는 세균과는 다르게 스스로 살아갈 수 있는 독립체가 아니다. 바이러스는 세포 내 기생체(obligate intracellular parasite)로서 자신을 복제하고, 증식하기 위해 살아있는 숙주세포가 반드시 필요하다.
  • 12,13) 그 중 항바이러스 활성과 관련된 물질로는 flavonoids, anthocyanins, carotenoids, terpenoids, lignans, sulfides, polyphenols, coumarins, saponins, alkaloids, polyines, thiophenes, peptides 그리고 essential oils 등 다양한 phytochemicals이 알려져 있으며14,15) 새로운 항바이러스 활성 화합물을 찾기 위한 연구는 각 지역에서 자생하는 약용식물을 중심으로 활발하게 진행 중이다.16) 천연물로부터 얻을 수 있는 화합물은 합성 화합물에 비해 훨씬 복잡한 구조적 다양성과 chiral center를 가지고 있어 합성이 어려운 단점이 있다.17) 하지만 이러한 구조적 특성으로 인해 다양한 작용기전을 나타낼 수 있어 바이러스의 내성 발현율이 현저히 낮아지는 장점이 있다.
  • 30,31) 백신 접종으로 예방이 가능하다고 알려져 있지만 상당수의 접종한 개체에서도 발병하는 경우가 있다.32) 백신의 항체 형성능 저하, 개체의 면역력 감소, 추가접종미이행 등이 원인으로 지목된다. Canine distemper virus(CDV)는 개 홍역의 원인체로 Paramyxoviridae과의 Morbillivirus속에 속하는 negativesingle stranded RNA바이러스이다.
  • 42) 특히 항바이러스 활성에 있어서는 바이러스와 세포에 직접 작용하여 침투과정을 억제하고, 바이러스 복제에 필요한 효소인 reverse transcriptase, RNA polymerase, poly(ADP-ribose) glycohydrolase등을 억제하여 항바이러스 활성을 나타낸다고 알려져 있다.43) 쿠바의 전통적 약용식물로 알려진 R. mangle의 수용성 껍질 추출물은 다양한 polyphenol을 함유하고 있다.44) Armas등은 이 추출물이 항CDV 활성을 나타낸다고 보고하였으며, CDV의 세포 내 복제를 억제한다고 설명하고 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
Feline calicivirus란? Feline calicivirus(FCV)는 고양이 호흡기 질환을 유발하는 바이러스로서 칼리시바이러스과의 Vesivirus 속에 속하는 positive-single stranded RNA 바이러스이다. FCV에 감염 시 구강이나 상부호흡기 등에 가벼운 증상부터 전신감염으로 치명적인 상태에 이르기까지 다양한 양상을 보인다.
Canine distemper는 어떤 특징이 있는가? Canine distemper(CD)는 개와 기타 육식동물에게 발병할 수 있는 심각한 전신성 질환으로 전염성이 매우 높고 유병율과 치사율 또한 높은 것이 특징이다.30,31) 백신 접종으로 예방이 가능하다고 알려져 있지만 상당수의 접종한 개체에서도 발병하는 경우가 있다.
항생제 투여 및 수액처치 등의 대증치료를 시행하며 치료받지 못하는 경우 사망률이 92% 이상에 달하는 이유는 무엇인가? 61,62) 대부분 6개월령 이하의 어린 개혹은 면역이 저하된 개에게 감염되어 출혈성 장염, 구토, 설사, 식욕저하 등을 동반한 급격한 백혈구 감소증을 나타낸다.63) CPV 감염 시 특별한 치료제는 없으며 재조합 고양이 인터페론-ω(rFeIFN-ω)가 임상증상을 개선시키고 사망률을 낮춘다는 보고가 있지만 높은 비용으로 인해 일반적인 치료제로 사용하기엔 한계가 있다.64)때문에 주로 항생제 투여 및 수액처치 등의 대증치료를 시행하며 치료받지 못하는 경우 사망률이 92% 이상에 달한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (84)

  1. Sohail, M. N., Rasul, F., Karim, A., Kanwal, U. and Attitalla, I. H. (2011) Plant as a source of natural antiviral agents. Asian J. Anim. Vet. Adv. 6: 1125-1152. 

  2. Wagner, E. K., Hewlett, M. J., Bloom, D. C. and Camerini, D. (1999) Basic virology (Vol. 3). Blackwell Science, San Francisco. 

  3. Kitazato, K., Wang, Y. and Kobayashi, N. (2007) Viral infectious disease and natural products with antiviral activity. Drug Discov. Today Ther. Strateg.1: 14-22. 

  4. Perera, C. and Efferth, T. (2012) Antiviral medicinal herbs and phytochemicals. J. Pharmacogn. 3: 45-48. 

  5. De Clercq, E. R. I. K. (1997) In search of a selective antiviral chemotherapy. Clin. Microbiol. Rev. 10: 674-693. 

  6. Barros, A. V., Melo, M. S. and Simoni, I. C. (2012) Screening of Brazilian plants for antiviral activity against animal herpesviruses. J. Med. Plants Res. 6: 2261-2265. 

  7. Martin, K. W. and Ernst, E. (2003) Antiviral agents from plants and herbs: a systematic review. Antivir. Ther. 8: 77-90. 

  8. Lin, L. T., Hsu, W. C. and Lin, C. C. (2014) Antiviral natural products and herbal medicines. J. Tradit. Complement. Med. 4: 24-35. 

  9. Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B. and Parveen, Z. (2008) Antiviral potentials of medicinal plants. Virus Res. 131: 111-120. 

  10. Abad, M. J., Bermejo, P., Palomino, S. S., Carrasco, L. and Chiriboga, X. (1999) Antiviral activity of some South American medicinal plants. Phytother. Res. 13: 142-146. 

  11. Sumithira, P., Mangala, S. D., Sophie, A. M. and Latha, C. P. (2012) Antiviral and antioxidant activities of two medicinal plants. Int. J. Curr. Sci. 256-261. 

  12. Min, S. K., Park, Y. K., Park, J. H., Jin, S. H. and Kim, K. W. (2004) Screening of antibacterial activity from hot water extracts of indigenous plants. J. Life Sci. 14: 951-962. 

  13. Agrios, G. N. (1988) In Plant Pathology. 325-450, Academic Press. Inc., New York. 

  14. 권순배 (2005) 식물기원의 천연물 항바이러스 소재(素材) 탐색의 연구동향. 생물학연구정보센터 BioWave. 7: 1-2. 

  15. Baxter, H., Harborne, J. B. and Moss, G. P. (1998) Phytochemical dictionary: a handbook of bioactive compounds from plants. 483-498, CRC press, Philadelphia. 

  16. 민상기, 박은희, 박연경, 권순목, 김남호, 정영아, 진성현, 유평종 (2009) 자생식물 열수추출액의 항바이러스 효능검색. 보건환경연구원보 19: 9-19. 

  17. Oh, Y. I., Kim, N. A., Kim, Y. H., Lee, T. H. and Lee, Y. S. (2013) Recent advances on the study of Hsp90 inhibitory natural products. Kor. J. Pharmacogn. 44: 209-219. 

  18. Zheng, J., He, J. G., Ji, B. P., Li, Y. and Zhang, X. F. (2007) Antihyperglycemic activity of Prunella vulgaris L. in streptozotocin-induced diabetic mice. Asia Pac. J. Clin. Nutr. 16: 427-431. 

  19. Schnitzler, P., Schon, K. and Reichling, J. (2001) Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie 56: 343-347. 

  20. De Logu, A., Loy, G., Pellerano, M. L., Bonsignore, L. and Schivo, M. L. (2000) Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolinainsularis essential oil. Antiviral Res. 48: 177-185. 

  21. Ahmad, A., Davies, J., Randall, S. and Skinner, G. R. B. (1996) Antiviral properties of extract of Opuntiastreptacantha. Antiviral Res. 30: 75-85. 

  22. Glatthaar-Saalmuller, B., Sacher, F. and Esperester, A. (2001) Antiviral activity of an extract derived from roots of Eleutherococcussenticosus. Antiviral Res. 50: 223-228. 

  23. Rajbhandari, M., Wegner, U., Julich, M., Schoepke, T. and Mentel, R. (2001) Screening of Nepalese medicinal plants for antiviral activity. J. Ethnopharmacol. 74: 251-255. 

  24. De Clercq, E. (2000) Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med. Res. Rev. 20: 323-349. 

  25. Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. I., Huffmann, J. H. and Kern, E. R. (1999) Antiviral activities of biflavonoids. Planta Med. 65: 120-125. 

  26. Wang, G. F., Shi, L. P., Ren, Y. D., Liu, Q. F., Liu, H. F., Zhang, R. J., Li, Z., Zhu, F. H., He, P. L., Tang, W., Tao, P. Z., Li, C., Zhao, W. M. and Zuo, J. P. (2009) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 83: 186-190. 

  27. 이서윤 (2009) 현대 학국사회에서 '애완동물'의 사회학적 의미. 부산대학교 대학원 석사학위논문. 

  28. 농림축산식품부 (2015) 동물보호에 대한 국민의식 조사결과. 서울 

  29. 강병구 (2018) 수의사처방제 시행 후 인식현황 및 개선방안. 충남대학교 대학원 석사학위논문. 

  30. Anis, E., Newell, T. K., Dyer, N. and Wilkes, R. P. (2018) Phylogenetic analysis of the wild-type strains of canine distemper virus circulating in the United States. Virol. J. 15: 118. 

  31. Silin, D., Lyubomska, O., Ludlow, M., Duprex, W. P. and Rima, B. K. (2007) Development of a challenge-protective vaccine concept by modification of the viral RNA-dependent RNA polymerase of canine distemper virus. J. Virol. 81: 13649-13658. 

  32. Ek-Kommonen, C., Sihvonen, L., Pekkanen, K., Rikula, U. and Nuotio, L. (1997) Outbreak of canine distemper in vaccinated dogs in Finland. Vet. Rec. 141: 380-382. 

  33. Martella, V., Elia, G. and Buonavoglia, C. (2008) Canine distemper virus. Vet. Clin. North. Am. Small. Anim. Pract. 38: 787-797. 

  34. Elia, G., Belloli, C., Cirone, F., Lucente, M. S., Caruso, M., Martella, V., Decaro N., Buonavoglia C. and Ormas, P. (2008) In vitro efficacy of ribavirin against canine distemper virus. Antiviral Res. 77: 108-113. 

  35. 라정찬, 이종은, 송대섭, 권남훈, 박봉균, 박용호 (2003) 천연물을 이용한 살균 및 살바이러스 효과에 관한 연구. 한국식품위생안전성학회지. 18: 183-188. 

  36. Gonzalez-Burquez, M. D. J., Gonzalez-Diaz, F. R., Garcia-Tovar, C. G., Carrillo-Miranda, L., Soto-Zarate, C. I., Canales-Martinez, M. M., Penieres-Carrillo, J. G., Cruz-Sanchez, T. A. and Fonseca-Coronado, S. (2018) Comparison between in vitro antiviral effect of Mexican propolis and three commercial flavonoids against canine distemper virus. Evid. Based. Complement. Alternat. Med. 2018: 1-8 

  37. Huang, S., Zhang, C. P., Wang, K., Li, G. Q. and Hu, F. L. (2014) Recent advances in the chemical composition of propolis. Molecules 19: 19610-19632. 

  38. Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R. and Popov, S. (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 64, 235-240. 

  39. Chan, G. C. F., Cheung, K. W. and Sze, D. M. Y. (2013) The immunomodulatory and anticancer properties of propolis. Clin. Rev. Allergy Immunol. 44: 262-273. 

  40. Bagla, V. P., McGaw, L. J. and Eloff, J. N. (2012) The antiviral activity of six South African plants traditionally used against infections in ethnoveterinary medicine. Vet. Microbiol. 155, 198-206. 

  41. Chattopadhyay, D., Chawla-Sarkar, M., Chatterjee, T., Dey, R. S., Bag, P., Chakraborti, S. and Khan, M. T. H. (2009) Recent advancements for the evaluation of anti-viral activities of natural products. N. Biotechnol. 25: 347-368. 

  42. Daglia, M. (2012) Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23: 174-181. 

  43. Jassim, S. A. and Naji, M. A. (2003) Novel antiviral agents: a medicinal plant perspective. J. Appl. Microbiol. 95: 412-427. 

  44. Sanchez, L. M., Melchor, G., Alvarez, S. and Bulnes, C. (1998) Caracterizacionquimica y toxicologica de unaformulacioncicatrizante de Rhizophora mangle L. Rev. Salud. Anim. 20: 69-72. 

  45. de Armas, E., Scagliarini, A., Battilani, M., Alfonso, P. and Marrero, E. (2018) In vitro antiviral activity of Rhizophora mangle L. aqueous bark extract and the butanolic fraction against canine distemper virus and bovine herpes virus type 1. Rev. Salud. Anim. 40. 

  46. de Armas, E., Escobar, A., Faure, R., Marrero, E., Bligh, A. S., Branford-White, C. J. and White, K. N. (2016) Stimulation of Interleukin-2 [IL] Release by Rhizophora mangle Bark Aqueous Extracts and its Fractions. Eur. J. Med. Plants. 15: 1-10. 

  47. Tapas, A. R., Sakarkar, D. M. and Kakde, R. B. (2008) Flavonoids as nutraceuticals: a review. Trop. J. Pharm. Res. 7: 1089-1099. 

  48. Thapa, M., Kim, Y., Desper, J., Chang, K. O. and Hua, D. H. (2012) Synthesis and antiviral activity of substituted quercetins. Bioorg. Med. Chem. Lett. 22: 353-356. 

  49. Carvalho, O. V., Botelho, C. V., Ferreira, C. G. T., Ferreira, H. C. C., Santos, M. R., Diaz, M. A. N., Oliveira, T. T., Soares-Martins, J. A. P., Almeida, M. R. and Junior, A. S. (2013) In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design. Res. Vet. Sci. 95: 717-724. 

  50. Formica, J. V. and Regelson, W. (1995) Review of the biology of quercetin and related bioflavonoids. Food. Chem. Toxicol. 33: 1061-1080. 

  51. Kim, Y., Narayanan, S. and Chang, K. O. (2010) Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Res. 88: 227-235. 

  52. Cushnie, T. T. and Lamb, A. J. (2005) Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356. 

  53. Gallina, L., Dal Pozzo, F., Galligioni, V., Bombardelli, E. and Scagliarini, A. (2011) Inhibition of viral RNA synthesis in canine distemper virus infection by proanthocyanidin A2. Antiviral Res. 92: 447-452. 

  54. Wu, Z. M., Yu, Z. J., Cui, Z. Q., Peng, L. Y., Li, H. R., Zhang, C. L., Shen, H. Q., Yi, P. F. and Fu, B. D. (2017) In vitro antiviral efficacy of caffeic acid against canine distemper virus. Microb. Pathog. 110: 240-244. 

  55. Gonzalez, M. E., Alarcon, B. and Carrasco, L. (1987) Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob. Agents Chemother. 31: 1388-1393. 

  56. Mu, L., Zhang, Y., Zhang, M., Li, L., Zhang, Y. and Liu, S. (2009) Antiviral activities of pinon shell polysaccharide on CDV and CPV in vitro. Chin. J. Vet. Sci. 29: 1111-1114. 

  57. Blunden, G. (2001) Biologically active compounds from marine organisms. Phytother. Res. 15: 89-94. 

  58. Trejo-Avila, L. M., Morales-Martinez, M. E., Ricque-Marie, D., Cruz-Suarez, L. E., Zapata-Benavides, P., Moran-Santibanez, K. and Rodriguez-Padilla, C. (2014) In vitro anticanine distemper virus activity of fucoidan extracted from the brown alga Cladosiphon okamuranus. Virusdisease 25: 474-480. 

  59. Damonte, E. B., Matulewicz, M. C. and Cerezo, A. S. (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 11: 2399-2419. 

  60. Singethan, K., Hiltensperger, G., Kendl, S., Wohlfahrt, J., Plattet, P., Holzgrabe, U. and Schneider-Schaulies, J. (2010) N-(3-Cyanophenyl)-2-phenylacetamide, an effective inhibitor of morbillivirus-induced membrane fusion with low cytotoxicity. J. Gen. Virol. 91: 2762-2772. 

  61. Mira, F., Purpari, G., Lorusso, E., Di Bella, S., Gucciardi, F., Desario, C., Macaluso, G., Decaro, N. and Guercio, A. (2018) Introduction of Asian canine parvovirus in Europe through dog importation. Transbound. Emerg. Dis. 65: 16-21. 

  62. Miranda, C., Parrish, C. R. and Thompson, G. (2016) Epidemiological evolution of canine parvovirus in the Portuguese domestic dog population. Vet. Microbiol. 183: 37-42. 

  63. Goddard, A., Leisewitz, A. L. (2010) Canine parvovirus. Vet. Clin. North. Am. Small. Anim. Pract. 40: 1041-1053. 

  64. Martin, V., Najbar, W., Gueguen, S., Grousson, D., Eun, H. M., Lebreux, B. and Aubert, A (2002). Treatment of canine parvoviral enteritis with interferon-omega in a placebo-controlled challenge trial. Vet. Microbiol. 89: 115-127. 

  65. Mylonakis, M. E., Kalli, I. and Rallis, T. S. (2016) Canine parvoviral enteritis: an update on the clinical diagnosis, treatment, and prevention. Vet. Med. 7: 91. 

  66. Kudi, A. C. and Myint, S. H. (1999) Antiviral activity of some Nigerian medicinal plant extracts. J. Ethnopharmacol. 68: 289-294. 

  67. Qiu, H., Xie, H., Liu, J. and Zhu, Z. (2016) Review of traditional chinese herbs used in the clinical treatment of canine parvovirus infection. Am. J. Tradit. Chin. Vet. Med. 11: 63-69 

  68. Feng, H. B., Zeng, X. Y., Liu, J., Zhu, Z. R., Du, L. L. and Lv, X. (2012) Study on activity of antivirus of eight Chinese herbal medicine ingredients on canine parvovirus in vitro [J]. Chin. J. Vet. Sci. 6: 18. 

  69. Wang, Y., Chen, Y., Du, H., Yang, J., Ming, K., Song, M. and Liu, J. (2017) Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. Exp. Biol. Med. 242: 344-353. 

  70. Feng, H., Fan, J., Yang, S., Zhao, X. and Yi, X. (2017) Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against Canine Parvovirus in vitro. Int. J. Biol. Macromol. 99: 511-518. 

  71. Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S. and Yang, J. (2015) Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses 8: 6. 

  72. Choi, H. J., Song, J. H., Park, K. S. and Kwon, D. H. (2009) Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 37: 329-333. 

  73. Carvalho, O. V., Oliveira, F. S., Saraiva, G. L., Botelho, C. V., Ferreira, H. C. C., Santos, M. R., Silva Junior, A. and Almeida, M. R. (2013) Antiviral potencial of quercetin in canine parvovirus. Arq. Bras. Med. Vet. Zootec. 65: 353-358. 

  74. Radford, A. D., Coyne, K. P., Dawson, S., Porter, C. J. and Gaskell, R. M. (2007) Feline calicivirus. Vet. Res. 38: 319-335. 

  75. Jimenez, L., Chiang, M. (2006) Virucidal activity of a quaternary ammonium compound disinfectant against feline calicivirus: a surrogate for norovirus. Am. J. Infect. Control. 34: 269-273. 

  76. Tree, J. A., Adams, M. R. and Lees, D. N. (2005) Disinfection of feline calicivirus (a surrogate for Norovirus) in wastewaters. J. Appl. Microbiol. 98: 155-162. 

  77. Aboubakr, H. A., El-Banna, A. A., Youssef, M. M., Al-Sohaimy, S. A. and Goyal, S. M. (2014) Antiviral effects of Lactococcuslactis on feline calicivirus, a human norovirus surrogate. Food. Environ. Virol. 6: 282-289. 

  78. 서동주 (2017) 허브추출물과 플라보노이드의 식중독바이러스 억제 효과 및 항바이러스기전. 중앙대학교 대학원 박사학위논문. 

  79. Kim, K. L., Kim, Y. M., Lee, E. W., Lee, D. S. and Lee, M. S. (2009) Screening of antiviral activity from natural plants against feline calicivirus. J. Life Sci. 19: 928-933. 

  80. Xu, J., Xu, Z. and Zheng, W. (2017) A review of the antiviral role of green tea catechins. Molecules 22: 1337. 

  81. Mahmood, M. S., Martinez, J. L., Aslam, A., Rafique, A., Vinet, R., Laurido, C., Hussain, I., Abbas, R. A., Khan, A. and Ali, S. (2016) Antiviral effects of green tea (Camellia sinensis) against pathogenic viruses in human and animals (a mini-review). Afr. J. Tradit. Complement. Altern. Med. 13: 176-184. 

  82. Lee, M. H., Lee, B. H., Jung, J. Y., Cheon, D. S., Kim, K. T. and Choi, C. (2011) Antiviral effect of Korean red ginseng extract and ginsenosides on murine norovirus and feline calicivirus as surrogates for human norovirus. J. Ginseng. Res. 35: 429. 

  83. Lee, M. H., Seo, D. J., Kang, J. H., Oh, S. H. and Choi, C. (2014) Expression of antiviral cytokines in Crandell-Reese feline kidney cells pretreated with Korean red ginseng extract or ginsenosides. Food. Chem. Toxicol. 70: 19-25. 

  84. Guo, Z., Chen, S., Liang, J. and Luo, X. (2010) Study on hypericin soluble powder against canine distemper virus in vitro. Vet. Sci. China 40: 201-204. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로