$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

표면개질된 소나무 수피를 이용한 수용액의 구리이온 흡착
Adsorption of copper ions from aqueous solution using surface modified pine bark media 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.33 no.2, 2019년, pp.131 - 140  

박세근 (수생태복원(주)) ,  김영관 (강원대학교 환경공학과)

Abstract AI-Helper 아이콘AI-Helper

This study used a packed column reactor and a horizontal flow mesh reactor to examine the removal of copper ions from aqueous solutions using pine bark, a natural adsorbent prepared from Korean red pine (Pinus densiflora). Both equilibrium and nonequilibrium adsorption experiments were conducted on ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구의 목적은 이와 같은 문제점을 해결하고 현장에 적용될 수 있도록 목재 성분을 흡착기능이 있는 여재(filter) 형태로서 사용하는 새로운 처리 시스템을 개발하고자 하였다. 이를 위하여 본 연구에서는 국내에는 목재로서의 경제성이 없으면서도 벌목 후 처분 또는 활용의 어려움으로 인하여 수종개량에 어려움을 겪고 있는 상황을 고려하여 다양한 목재 가운데 국내에 널리 분포되어 있으며 활용도가 높지 않은 소나무(Pinus densiflora) 수피를 가공하여 여재(filter)로 제작하고 중금속 성분 중에서 수용액의 구리 성분을 제거할 수 있는 가능성을 평가하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
수용액으로부터 중금속 성분을 제거하는 기존의 방법은 한계는? , 2003) 등이 있다. 그러나 이러한 방법들은 많은 처리 비용으로 인하여 현장 적용 시 배제되는 경우가 많았으며 (Babel and Kurniawan, 2003), 이러한 이유로 저비용의 흡착제에 대한 관심과 함께 흡착제 개발에 많은 연구가 진행되었다 (Choi and Yu, 2019; Ahmad and Danish, 2018; Dhir and Kumar, 2009; Garcia et al., 1988).
아연의 특성은 무엇인가? , 1974). 동물이나 식물을 비롯하여 미생물에게도 미량 영양물질인 아연은 일일 100~500mg 섭취 시 독성을 나타낸다 (Barceloux, 1999). 개발도상 국가의 경우 중금속에 의한 문제점은 더욱 심각하게 나타나는데 문제해결에 필요한 폐수처리 비용은 수질오염에 대한 예방을 어렵게 하고 있다.
흡착제로 사용될 수 있는 저비용의 농업부산물에는 무엇이 있는가? 목재를 비롯한 농업 부산물의 중금속 흡착능은 종류에 따라 큰 차이를 나타내지만 흡착 효과 및 비용을 고려하여 중금속의 농도를 1mg/L 이하까지 제거하기 위한 대안으로 오래전부터 관심을 받아왔다 (Chong and Volesky, 1995). 흡착제로 사용될 수 있는 저비용의 농업부산물에는 히코리나무 수피 (Ding et al., 2016), 녹차와 커피 폐기물 (Orhan and Buyukgunor, 1993), 땅콩껍질(Johnson et al., 2002), 소나무 수피 (Oh and Kim, 2006;Palma et al., 2003; Vazquez et al., 1994; Freer et al., 1989), 톱밥 (Ayyappan et al., 2005), 전나무 추출 섬유 (Min et al., 2004), 개질된 셀루로스 물질 (Acemioglu and Alma, 2001), 바나나 껍질 (Ahmad and Danish, 2018) 등이 있다. Ding et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (39)

  1. Acemioglu, B. and Alma, M.H. (2001). Equlibrium studies on tha adsortion of Cu(II) from aqueous solution onto cellulose, J. Colloid Interface Sci., 243, 81-84. 

  2. Ahmad, T. and Danish, M. (2018). Prospects of banana waste utilization in wastewater treatment: A review, J. Environ. Manage., 206, 330-348. 

  3. Alves, M.M., Gonzales Beca C.G., Guedes de Carvalho, R., Castanheira, J.M., Sol Pereira M.C. and Vasconcelos, L.A.T. (1993). Chromium removal in tannery wastewaters "polishing" by Pinus sylverstris bark, Water Res., 27(8), 1333-1338. 

  4. Ayyappan, R., Carmalin Sophia, A., Swaminathan, K. and Sandhya, S. (2005). Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes, Process Biochem., 40, 1293-1299. 

  5. Babel, S. and Kurniawan, T.A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., B97, 219-243. 

  6. Barceloux, D.G. (1999). Zinc, J. Toxicol: clin. toxicol., 37, 279-292. 

  7. Choi, H.J. and Yu, S.W. (2019). Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob, Environ. Eng. Res., 24(1), 99-106. 

  8. Chong, K.H. and Volesky, B. (1995). Description of two metal biosorption equlibria by Langmuir-type models, Biotechnol. Bioeng. 47, 451-460. 

  9. Chowdhury, Z.Z., Hamid, S.B.A., Das, R., HAsan, R., Zain, S.M., Khalid, K. and Uddin, N. (2013). Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in tremoval of contaminants from aqueous solution, Bioresour., 8(4), 6523-6555. 

  10. Dhir, B. and Kumar, R. (2010). Adsorption of heavy metals by Salvinia biomass and agricultural residues, Int. J. Environ. Res., 4(3), 427-432. 

  11. Ding, Z., Hu, X., Wan, Y., Wang, S. and Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: BAtch and column tests, J. Ind. and Eng. Chem., 33, 239-245. 

  12. Faust, S.D. and Aly, O.M. (1998). Chemistry of water treatment, 2nd ed., Lewis Publishers, Boca Raton. 

  13. Freer, J., Baeza, J., Maturana, H. and Palma, G. (1989). Removal and recovery of uranium by modified Pinus radiata bark, J. Chem. Technol. Biotechnol., 46, 41-48. 

  14. Friberg, L.M., Piscaor, G.F. and Nordberg, T. (1974). Cadmium in the Environmental, 2nd ed., CRC Press, Cleveland, OH. 

  15. Garcia, M.A.F., Utrilla, J.R., Gordillo, J.R. and Toledo, I.B. (1988). Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products, Carbon, 26(3), 363-373. 

  16. Gerente, C., Mesnil, P.C., Andres, Y., Rhibault, J. and Cloirec, P.L. (2000). Removal of metal ions from aqueous solution on low cost natural polysaccharides, Sorption mechanism approach, React. Funct. Polym., 46, 135-144. 

  17. Gode, F. and Pehlivan, E. (2006). Removal of chromium(III) from aqueous solutions using Lewtit S 100: the effect of pH, time, metal concentration and temperature, J. Hazard. Mater., 136(2), 330-337. 

  18. Hall, K.R., Eagleton, L.C., Acrivos, A. and Vermeulen, T. (1996). Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions, Ind. Eng. Chem. Fundam., 5, 212-218. 

  19. Ho, Y.S. and McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34, 735-742. 

  20. Hu, Z., Leu, L., Li, Y. and Ni, Y. (2003). Chromium adsorption on high performance activated carbons from aqueous solution, Sep. Purif. Tchnol., 31, 13-18. 

  21. Johnson, P.D., Watson, M.A., Brown, J. and Jefcoat, I.A. (2002). Peanut hull pellets as a single sorbent for the capture of Cu(II) from wastewater, Water Manag., 22, 471-480. 

  22. Kokorevics, A., Gravitis, J., Chirkova. E., Bikovens, O. and Druz, N. (1999). Sorption of chromium(III) and copper(II) ions on biodamaged wood and lignin, Cellulose Chem. Technol., 33, 261-267. 

  23. Laszlo, J.A. and Dintzis, F.R. (1994). Crop residues as ion-exchange materials: Treatment of soybean hull and sugabeet fiber with epichlorohydrin to improve cation-exchange capacity and physical stability, J. Appl. Poly. Sci., 52, 531-538. 

  24. Manaham, S.E. (2000). Environmental chemistry, 7th ed., CRC Press, Boca Raton, FL. 

  25. Min, S.H., Han, J.S., Shin, E.W. and Park, J.K. (2004). Improvement of cadmium ion removal by base treatment of juniper fiber, Water Res., 38, 1289-1295. 

  26. Molinari, R., Argurio, P. and Poerio, T. (2004). Comparison of polyethylenimine, polyacrylic acid and poly dimethylamine-epichlorohydrin-ethylenediamine in Cu removal from wastewaters by polymer-assisted ultrafiltration, Desalination, 162, 217-228. 

  27. Oh, M.Y. and Kim, Y.K. (2006). Adsorption of lead ions from aqueous solutions using milled pine bark, J. Korean Soc. Water Wastewater, 20(3), 389-395. 

  28. Orhan, Y. and Buyukgunor, H. (1993). The removal of heavy metals by using agricultural wastes, Water Sci. Technol., 28, 247-255. 

  29. Osman, H.E., Badwy, R.K. and Ahmad, H.F. (2010). Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater, J. Phytol., 2, 51-62. 

  30. Palma, G., Freer, J. and Baeza, J. (2003). Removal of metal ions by modified Pinus radiata bark and tannins from water solutions, Water Res., 37, 4974-4980. 

  31. Randall, J.M., Garret, V., Bermann, R.L. and Waiss, Jr., A.C. (1974). Use of bark to remove heavy metal ions from waste solutions, For. Prod. J., 24, 80-84. 

  32. Randall, J.M., Hautala, E. and McDonald, G. (1978). Binding of heavy metal ions by formaldehyde polymerized peanut skins, J. Appl. Polym. Sci., 22, 379-387. 

  33. Sciban, M., Kukic, D, Klasnja, M., Beszedes, S. and Prodanonovic, J. (2014). Adsorption capacities of different lignocellulosic materials for copper ions, Acta Tehnica Corviniensis, 83-86. 

  34. Sjostrom, E. (1981). Wood Chemistry Fundamentals and Applications, Academic Press, New York. 

  35. Tshabalala, M.A. (2006). Personal communications. 

  36. Vasquez, G., Antorrena, G., Gonzalez, J. and Doval, M.D. (1994). Adsorption of heavy metal ions by chemically modified Pinus pinaster bark, Bioresour. Technol., 48, 251-255. 

  37. Verma, K.V.R., Swaminathan, T. and Subrahmnyam, P.V.R. (1990). Heavy metal removal with lignin, J. Environ. Sci. Health, A25, 242-265. 

  38. Wartelle, L. and Marshall, W.E. (2005). Chromate ion adsorption by agricultural by-products modified with dimethyloldihydroxyethylene urea and choline chloride, Water Res., 39, 2869-2876. 

  39. Yu, M.H. (2005). Biological and health effects of pollutants, 2nd ed., CRC Press, Boca Raton, FL. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로