$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

바이오항공유의 함량 변화에 따른 점화지연특성 분석
Analysis on Ignition Delay Time According to the Ratio of Bio-aviation Fuel in Jet A-1 Mixture 원문보기

한국추진공학회지 = Journal of the Korean Society of Propulsion Engineers, v.23 no.2, 2019년, pp.13 - 20  

강샛별 (The 4th R&D Institute - 5th Directorate, Agency for Defense Development) ,  정병훈 (The 4th R&D Institute - 5th Directorate, Agency for Defense Development)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 석유계항공유와 혼합하여 사용이 가능한 바이오항공유의 혼합 비율에 따른 점화지연 특성의 변화를 확인하기 위하여, 두 항공유를 일정한 비율로 혼합한 시료의 점화지연시간을 측정하여 분석하였다. 측정한 모든 온도 조건에서 Bio-6308의 점화지연시간이 Jet A-1의 점화지연시간보다 짧게 나타났으며, 두 항공유를 일정한 비율로 혼합한 경우에도 Bio-6308의 함량이 증가할수록 점화지연시간은 짧아지는 경향을 보였는데, 이는 Jet A-1을 구성하는 방향족 화합물의 영향 때문임을 n-heptane/Toluene의 점화지연시간 측정을 통해 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

In this study, the ignition delay time of blended aviation fuels was measured and analyzed to confirm the characteristic of ignition delay according to the blending ratio of bio-aviation fuel to petroleum-based aviation fuel. The ignition delay time of bio-aviation fuel(Bio-6308) was shorter than th...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 연소기 설계 및 성능구현 시에 중요하게 생각되는 요소 중의 하나인 연료의 점화지연특성을 확인하기 위하여, 바이오 항공유와 석유계항공유를 일정한 비율로 혼합한 각 항공유의 점화지연시간을 Combustion Resea rch Unit(CRU) 장비를 사용하여 측정하였으며, 그 결과를 토대로 점화지연특성에 관해 분석하였다.
  • A-1 이다. 외국 바이오항공유 중에서도 10PO SF6308을 실험대상으로 선정한 이유는, 자체 개발한 바이오항공유의 제조 공정인 HRJ(Hydro-processed Renewable Jet)와 동일한 공정으로 제조된 연료이기 때문에 향후 자체 개발한 바이오 항공유의 점화지연특성과 비교 가능한 기초 데이터를 얻기 위함이다.
본문요약 정보가 도움이 되었나요?

참고문헌 (12)

  1. Energy Efficiency and Renewable Energy(EERE), "Alternative Aviation Fuels: Overview of Challenges, Opportunities, and Next Steps", DOE/EE-1515, 2017. 

  2. Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H. and Mekhilef, S., “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” Renewable and Sustainable Energy Reviews, Vol. 16, No. 4, pp. 2070-2093, 2012. 

  3. "Droplet size," retrieved 03 Dec. 2018 from http://www.spray-nozzle.co.uk/resources/engineering-resources/guide-to-spray-properties/4-droplet-size. 

  4. Gohtani, S., Sirendi, M., Yamamoto, N., Kajikawa, K. and Yamano, Y., “Effect of droplet size on oxidation of decosahexaenoic acid in emulsion system,” Journal of Dispersion Science and Technology, Vol. 20, No. 5, pp. 1319-1325, 1999. 

  5. Simmie, J.M., “Detailed chemical kinetic models for the combustion of hydrocarbon fuels,” Progress in Energy and Combustion Science, Vol. 29, No. 6, pp. 599-634, 2003. 

  6. Emdee, J.L., Brezinsky, K. and Glassman, I., “A kinetic model for the oxidation of toluene mear 1200 K,” Jounal of Physical Chemistry, Vol. 96, No. 5, pp. 2151-2161, 1992. 

  7. Andrae, J., Johansson, D., Bjornborn, P., Risberg, P. and Kalghatgi, G., “Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends,” Combustion and Flame, Vol. 140, No. 4, pp. 267-286, 2005. 

  8. Vanhove, G., Petit, G. and Minetti, R., “Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel,” Combustion and Flame, Vol. 145, No. 3, pp. 521-532, 2006. 

  9. Hellier, P., Ladommatos, N., Allan, R. and Rogerson, J., “Combustion and emissions characteristics of toluene/n-heptane and 1-octene/n-octane binary mixtures in a direct injection compression ignition engine,” Combustion and Flame, Vol. 160, No. 10, pp. 2141-2158, 2013. 

  10. Westbrook, C.K., “Chemical kinetics of hydrocarbon ignition in practical combustion systems,” Proceedings of the Combustion Institute, Vol. 28, No. 2, pp. 1563-1577, 2000. 

  11. Griffiths, J.F., Halford-Maw, P.A., and Mahaned, C., “Spontaneous ignition delays as a diagnostic of the propensity of alkanes to cause engine knock,” Combustion and Flame, Vol. 111, No. 4, pp. 327-337, 1997. 

  12. Kang, S.B., Han, J.S. and Jeong, B.H., “Comparison of ignition delay time of petroleum-based and bio aviation fuel,” Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 6, pp. 118-125, 2018. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로