$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Deep Learning in MR Image Processing 원문보기

Investigative magnetic resonance imaging, v.23 no.2, 2019년, pp.81 - 99  

Lee, Doohee (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Institute of Engineering Research, Seoul National University) ,  Lee, Jingu (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Institute of Engineering Research, Seoul National University) ,  Ko, Jingyu (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Institute of Engineering Research, Seoul National University) ,  Yoon, Jaeyeon (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Institute of Engineering Research, Seoul National University) ,  Ryu, Kanghyun (Department of Electrical and Electronic Engineering, Yonsei University) ,  Nam, Yoonho (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)

Abstract AI-Helper 아이콘AI-Helper

Recently, deep learning methods have shown great potential in various tasks that involve handling large amounts of digital data. In the field of MR imaging research, deep learning methods are also rapidly being applied in a wide range of areas to complement or replace traditional model-based methods...

주제어

참고문헌 (116)

  1. ImageNet classification with deep convolutional neural networks Krizhevsky 1097 2012 

  2. IEEE Signal Processing Magazine Hinton 29 82 2012 10.1109/MSP.2012.2205597 

  3. Sequence to sequence learning with neural networks Sutskever 3104 2014 

  4. J Supercomput Jifara 1 2017 

  5. J Mach Learn Res Vincent 11 3371 2010 

  6. IEEE Trans Image Process Zhang 26 3142 2017 10.1109/TIP.2017.2662206 

  7. Deep residual learning for image recognition He 770 2016 

  8. arXiv preprint arXiv:1409.1556 Simonyan 2014 

  9. IEEE Trans Pattern Anal Mach Intell Chen 40 834 2018 10.1109/TPAMI.2017.2699184 

  10. Learning deconvolution network for semantic segmentation Noh 1520 2015 

  11. Nature LeCun 521 436 2015 10.1038/nature14539 

  12. Deep sparse rectifier neural networks Glorot 315 2011 

  13. Advances in neural information processing system 2 LeCun 396 1990 

  14. Proceedings of the IEEE LeCun 86 2278 1998 10.1109/5.726791 

  15. Deep learning Goodfellow 2016 

  16. Neural Netw Schmidhuber 61 85 2015 10.1016/j.neunet.2014.09.003 

  17. Going deeper with convolutions Szegedy 1 2015 

  18. Generative adversarial nets Goodfellow 2672 2014 

  19. Image-to-image translation with conditional adversarial networks Isola 1125 2017 

  20. Unpaired image-toimage translation using cycle-consistent adversarial networks Zhu 2223 2017 

  21. Nature Zhu 555 487 2018 10.1038/nature25988 

  22. Clin Orthop Relat Res Lauterbur 3 1989 

  23. Br J Radiol Mansfield 50 188 1977 10.1259/0007-1285-50-591-188 

  24. Magn Reson Med Griswold 47 1202 2002 10.1002/mrm.10171 

  25. Magn Reson Med Pruessmann 42 952 1999 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 

  26. Magn Reson Med Sodickson 38 591 1997 10.1002/mrm.1910380414 

  27. Magn Reson Med Lustig 58 1182 2007 10.1002/mrm.21391 

  28. IEEE Trans Med Imaging Wang 37 1289 2018 10.1109/TMI.2018.2833635 

  29. Convex optimization Boyd 127 2004 10.1017/CBO9780511804441.005 

  30. Magn Reson Med Han 80 1189 2018 10.1002/mrm.27106 

  31. SIAM J Imaging Sci Ye 11 991 2018 10.1137/17M1141771 

  32. Deep residual learning for compressed sensing MRI Lee 15 2017 

  33. Magn Reson Med Hammernik 79 3055 2018 10.1002/mrm.26977 

  34. Magn Reson Med Knoll 81 116 2019 10.1002/mrm.27355 

  35. Magn Reson Med Akcakaya 81 439 2019 10.1002/mrm.27420 

  36. IEEE Trans Med Imaging Yang 37 1310 2018 10.1109/TMI.2017.2785879 

  37. IEEE Trans Med Imaging Quan 37 1488 2018 10.1109/TMI.2018.2820120 

  38. IEEE Trans Med Imaging Mardani 38 167 2019 10.1109/TMI.2018.2858752 

  39. Phys Med Biol Hyun 63 135007 2018 10.1088/1361-6560/aac71a 

  40. Magn Reson Med Eo 80 2188 2018 10.1002/mrm.27201 

  41. IEEE Trans Med Imaging Aggarwal 38 394 2019 10.1109/TMI.2018.2865356 

  42. Med Image Anal Benou 42 145 2017 10.1016/j.media.2017.07.006 

  43. Image restoration by sparse 3D transform-domain collaborative filtering Dabov 681207 2008 

  44. IEEE Trans Image Process Elad 15 3736 2006 10.1109/TIP.2006.881969 

  45. From learning models of natural image patches to whole image restoration Zoran 479 2011 

  46. Weighted nuclear norm minimization with application to image denoising Gu 2862 2014 

  47. IEEE Trans Image Process Jin 26 4509 2017 10.1109/TIP.2017.2713099 

  48. IEEE Trans Biomed Eng Lee 65 1985 2018 10.1109/TBME.2018.2821699 

  49. Magn Reson Med Kyathanahally 80 851 2018 10.1002/mrm.27096 

  50. IEEE Trans Med Imaging Atkinson 16 903 1997 10.1109/42.650886 

  51. Magn Reson Med Loktyushin 70 1608 2013 10.1002/mrm.24615 

  52. Magn Reson Med Ooi 62 943 2009 10.1002/mrm.22082 

  53. PLoS One Maclaren 7 e48088 2012 10.1371/journal.pone.0048088 

  54. IEEE Trans Med Imaging Haskell 37 1253 2018 10.1109/TMI.2018.2791482 

  55. Magn Reson Med Kober 66 135 2011 10.1002/mrm.22797 

  56. Correction of motion artifacts using a multi-resolution fully convolutional neural network Sommer 1175 2018 

  57. Motion correction in MRI using deep learning Johnson 4098 2018 

  58. Motion correction in MRI using deep convolutional neural network Pawar 1174 2018 

  59. Reduction of respiratory motion artifact in c-spine imaging using deep learning: Is substitution of navigator possible? Lee 2660 2018 

  60. arXiv preprint arXiv 2018:1807.06956 Tamada 

  61. Automatic detection of motion artifacts in MR images using CNNS Meding 811 2017 

  62. Brain MRI super-resolution using deep 3D convolutional networks Pham 197 2017 

  63. Phys Med Biol Shi 63 085011 2018 10.1088/1361-6560/aab9e9 

  64. Brain MRI super resolution using 3D deep densely connected neural networks Chen 739 2018 

  65. Med Phys Kim 45 3120 2018 10.1002/mp.12945 

  66. Magn Reson Med Chaudhari 80 2139 2018 10.1002/mrm.27178 

  67. IEEE Trans Pattern Anal Mach Intell Dong 38 295 2016 10.1109/TPAMI.2015.2439281 

  68. AJNR Am J Neuroradiol Tanenbaum 38 1103 2017 10.3174/ajnr.A5227 

  69. J Magn Reson Imaging Ryu 2019 

  70. arXiv preprint arXiv 2018:1806.00153v2 Lee 

  71. Radiology Kim 287 658 2018 10.1148/radiol.2017171154 

  72. IEEE Trans Med Imaging Golkov 35 1344 2016 10.1109/TMI.2016.2551324 

  73. NMR Biomed Bertleff 30 2017 10.1002/nbm.3833 

  74. Magn Reson Med Domsch 79 890 2018 10.1002/mrm.26749 

  75. SafeNet: Artificial neural network for real-time T2 mapping with quality assurance Lee 2277 2018 

  76. Nature Ma 495 187 2013 10.1038/nature11971 

  77. Magn Reson Med Cohen 80 885 2018 10.1002/mrm.27198 

  78. Neuroimage Yoon 179 199 2018 10.1016/j.neuroimage.2018.06.030 

  79. Magn Reson Med Shmueli 62 1510 2009 10.1002/mrm.22135 

  80. Magn Reson Med Liu 61 196 2009 10.1002/mrm.21828 

  81. Magn Reson Med Liu 66 777 2011 10.1002/mrm.22816 

  82. Magn Reson Med Wharton 63 1292 2010 10.1002/mrm.22334 

  83. Magn Reson Med de Rochefort 63 194 2010 10.1002/mrm.22187 

  84. J Mach Learn Res Papyan 83 1 2017 

  85. IEEE Trans Inf Theory Wiatowski 64 1845 2018 10.1109/TIT.2017.2776228 

  86. SIAM J Imaging Sci Ye 11 991 2018 10.1137/17M1141771 

  87. arXiv preprint arXiv 2014:1403.6382 Razavian 

  88. Advances in neural information processing systems 27 Yosinski 3320 2014 

  89. Magn Reson Med Knoll 81 116 2019 10.1002/mrm.27355 

  90. Interpretable explanations of black boxes by meaningful perturbation Fong 3449 2017 

  91. Visualizing and understanding convolutional networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 8689 LNCS, No. PART 1 Zeiler 818 2014 

  92. Radiology Liu 286 676 2018 10.1148/radiol.2017170700 

  93. Med Phys Han 44 1408 2017 10.1002/mp.12155 

  94. Med Image Anal Xiang 47 31 2018 10.1016/j.media.2018.03.011 

  95. Deep MR to CT synthesis using unpaired data Wolterink 14 2017 

  96. Sci Rep Jun 8 9450 2018 10.1038/s41598-018-27742-1 

  97. J Magn Reson Imaging Gong 48 330 2018 10.1002/jmri.25970 

  98. Magn Reson Imaging Ryu 2019 

  99. U-net: Convolutional networks for biomedical image segmentation Ronneberger 234 2015 

  100. Fully convolutional networks for semantic segmentation Long 3431 2015 

  101. IEEE Trans Med Imaging Yang 37 1348 2018 10.1109/TMI.2018.2827462 

  102. Medical image synthesis with context-aware generative adversarial networks Nie 417 2017 

  103. Neuroimage Fischl 62 774 2012 10.1016/j.neuroimage.2012.01.021 

  104. Neuroimage Jenkinson 62 782 2012 10.1016/j.neuroimage.2011.09.015 

  105. Ischemic Stroke Lesion Segment Kamnitsas 13 46 2015 

  106. arXiv preprint arXiv 2018:1806.04224 Rajchl 

  107. Med Image Anal Havaei 35 18 2017 10.1016/j.media.2016.05.004 

  108. IEEE Trans Med Imaging Pereira 35 1240 2016 10.1109/TMI.2016.2538465 

  109. J Digit Imaging Akkus 30 449 2017 10.1007/s10278-017-9983-4 

  110. SPIE Med Imaging Liu 10134 1 2017 

  111. J Magn Reson Imaging Song 48 1570 2018 10.1002/jmri.26047 

  112. V-net: fully convolutional neural networks for volumetric medical image segmentation Milletari 565 2016 

  113. Neuroimage Clin Guerrero 17 918 2018 10.1016/j.nicl.2017.12.022 

  114. Radiology Norman 288 177 2018 10.1148/radiol.2018172322 

  115. Med image Comput Comput Assist Interv Prasoon 16 246 2013 

  116. Magn Reson Med Zhou 80 2759 2018 10.1002/mrm.27229 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로