$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

본 연구에서는 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망을 Internet of Things (IoT) 파워미터에 적용하여 단기 전력사용량 예측방법을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 성능평가 지표로써 Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Percentage Error (MPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)를 이용한다. 실험 결과는 GRU 기반의 모델이 LSTM 기반의 모델에 비해 MAPE 기준으로 4.52%, MPE 기준으로 5.59%만큼의 성능개선을 보였다.

Abstract

In this paper, we propose a short-term power forecasting method by applying Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network to Internet of Things (IoT) power meter. We analyze performance based on real power consumption data of households. Mean absolute error (MAE), mean absolute percentage error (MAPE), mean percentage error (MPE), mean squared error (MSE), and root mean squared error (RMSE) are used as performance evaluation indexes. The experimental results show that the GRU-based model improves the performance by 4.52% in the MAPE and 5.59% in the MPE compared to the LSTM-based model.

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
장기 의존성 문제
단순한 순환 신경망의 경우 생기는 장기 의존성 문제를 해결할 방안으로 등장한 것은 무엇인가?
순환 신경망의 변형구조인 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망

그러나 단순한 순환 신경망의 경우 장기 의존성 문제가 있다. 이 문제를 해결할 방안으로 순환 신경망의 변형구조인 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망이 등장했다. GRU는 LSTM보다 매개변수가 적고 수렴 속도가 빠르며 정확도도 비슷하다[5].

정확한 전력 예측
정확한 전력 예측으로 무엇이 향상될 수 있는가?
전력 공급용량과 신뢰성이 향상될 수 있다

정확한 전력 예측은 전력 공급용량과 신뢰성이 향상될 수 있다. 동시에 전력공급회사는 전력 관련 건설을 합리적으로 수행하고 예측값에 따라 자원 낭비를 피할 수 있다[1].

GRU
GRU는 어떤 특징을 가지는가?
LSTM보다 매개변수가 적고 수렴 속도가 빠르며 정확도도 비슷

이 문제를 해결할 방안으로 순환 신경망의 변형구조인 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망이 등장했다. GRU는 LSTM보다 매개변수가 적고 수렴 속도가 빠르며 정확도도 비슷하다[5]. 따라서 본 논문은 LSTM 신경망과 GRU 신경망에 대해 알아보고 주거 지역 사회의 단기 전력 예측에 두 가지 신경망을 적용해 성능평가를 진행한다.

질의응답 정보가 도움이 되었나요?

저자의 다른 논문

참고문헌 (13)

  1. 1. D. Gan, Y. Wang, N. Zhang and W. Zhu, "Enhancing short-term probabilistic residential load forecasting with quantile long-short-term memory," Journal of Engineering, vol. 2017, no. 14, pp. 2622-2627, Jan. 2017. DOI: https://doi.org/10.1049/joe.2017.0833 
  2. 2. Y. Chen, B. Zhang, J. Wang, B. Mao, R. Fang, C. Mao and S. Duan, "Active control strategy for microgrid energy storage system based on short-term load forecasting," Power System Technology, vol. 35, no. 8, pp. 35-40, Aug. 2011. 
  3. 3. P. Zhang, X. Pan and W. Xue, "Short-term load forecasting based on fuzzy clustering wavelet decomposition and BP neural network," in Proc. 2011 IEEE Asia-Pacific Power and Energy Engineering Conference, pp. 1-4, Wuhan, China, Mar. 2011. DOI:https://doi.org/10.1109/appeec.2011.5748523 
  4. 4. D.C. Park, M. A. El-Sharkawi, R. J. Marks, L. E. Atlas and M. J. Damborg, "Electric load forecasting using an artificial neural network," IEEE Trans. Power Systems, vol. 6, no. 2, pp. 442-449, May 1991. DOI: https://doi.org/10.1109/59.76685 
  5. 5. J. Zheng, X. Chen, K. Yu, L. Gan, Y. Wang and K. Wang, "Short-term power load forecasting of residential community based on GRU neural network," in Proc. 2018 IEEE International Conference on Power System Technology(POWERCON '2018), pp.4862-4868, Guangzhou, China, Nov. 2018. DOI:https://doi.org/10.1109/powercon.2018.8601718 
  6. 6. C. Olach, "Understanding LSTM networks," 2015; Available at http://colah.github.io/ 
  7. 7. S. Hochreiter and J. Schmidhuber, "Long short-term memory", Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997. DOI: https://doi.org/10.1162/neco.1997.9.8.1735 
  8. 8. K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," in Proc. 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1724-1734, Doha, Qatar, Oct. 2014. DOI: https://doi.org/10.3115/v1/d14-1179 
  9. 9. J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," in Proc. 2014 NIPS Workshop on Deep Learning, pp.1-9, Montreal, Canada, Dec. 2014. 
  10. 10. M. Liberatore and P. Shenoy, "UMass Trace Respository," 2018; Available at http://traces.cs.umass.edu/ 
  11. 11. Y. Cheng, C. Xu, D. Mashima, V. L. L. Thing and Y. Wu, "PowerLSTM: Power demand forecasting using long short-term memory neural network," in Proc. 2017 Advanced Data Mining and Applications, pp. 727-740, Singapore, Oct. 2017. DOI:https://doi.org/10.1007/978-3-319-69179-4_51 
  12. 12. K. Seo, "A comparison study on back-propagation neural network and support vector machinces for the image classification problems," Journal of the Korea Academia-Industrial cooperation Society, vol. 9, no. 6, pp. 1889-1893, Dec. 2008. DOI: https://doi.org/10.5762/KAIS.2008.9.6.1889 
  13. 13. J. Ahn, S. Park and C. Kim, "A study on neural network model for winter electric power demand prediction," The Journal of KIIT, vol. 15, no. 9, pp. 1-9, Sept. 2017. DOI: https://doi.org/10.14801/jkiit.2017.15.9.1 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

이 논문 조회수 및 차트

  • 상단의 제목을 클릭 시 조회수 및 차트가 조회됩니다.

DOI 인용 스타일

"" 핵심어 질의응답