$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

현실적인 빗방울 종단 낙하 속도-크기 관계의 처방이 한반도 여름철 지표 강수 모의에 미치는 영향
Effects of the Realistic Description for the Terminal Fall Velocity-Diameter Relationship of Raindrops on the Simulated Summer Precipitation over South Korea 원문보기

대기 = Atmosphere, v.30 no.4, 2020년, pp.421 - 437  

김다슬 (경북대학교 지구시스템과학부 천문대기과학과) ,  임교선 (경북대학교 지구시스템과학부 천문대기과학과) ,  김권일 (경북대학교 지구시스템과학부 천문대기과학과) ,  이규원 (경북대학교 지구시스템과학부 천문대기과학과)

Abstract AI-Helper 아이콘AI-Helper

The effects of the terminal fall velocity-diameter relationship for raindrops, which is prescribed based on the measurement, on the simulated surface precipitation over Korea during summer season were investigated in our study. Two rainfall cases, 1-month summer precipitation and mesoscale rainfall,...

주제어

표/그림 (15)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2004) 및 WSM6 방안에서 관측 값에 기반한 빗방울의 크기-종단 낙하 속도 관계의 처방 및 평가에 대한 연구가 수행되지 않은 실정이다. 본 연구에서는 빗방울의 지름에 따른 종단 낙하 속도의 현실적인 처방이 구름 미세물리 과정 및 지표의 강수에 미치는 영향을 알아보고자 한다. 2절에서는 모델 실험 사례 및 설계와 민감도 실험에 대해 설명하였으며, 3절에서는 실험 결과를 나타내었다.
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Ahn, J.-B., J.-N. Hur, and K.-M. Shim, 2010a: A simulation of agro-climate index over the Korean peninsula using dynamical downscaling with a numerical weather prediction model. Korean J. Agr. Forest Meteorol., 12, 1-10, doi:10.5532/KJAFM.2010.12.1.001 (in Korean with English abstract). 

  2. Ahn, J.-B., J.-Y. Hong, and K.-M. Shim, 2010b: Agro-climatic indices changes over the Korean peninsula in CO 2 doubled climate induced by atmosphere-oceanland-ice coupled general circulation model. Korean J. Agr. Forest Meteorol., 12, 11-22, doi:10.5532/KJAFM.2010.12.1.011 (in Korean with English abstract). 

  3. Ahn, J.-B., K.-M. Shim, M.-P. Jung, H.-G. Jeong, Y.-H. Kim, and E.-S. Kim, 2018: Predictability of temperature over South Korea in PNU CGCM and WRF hindcast. Atmosphere, 28, 479-490, doi:10.14191/Atmos.2018.28.4.479 (in Korean with English abstract). 

  4. Barthazy, E., S. Goke, R. Scheford, and D. Hogl, 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21, 1400-1416. 

  5. Beard, K. V., and H. R. Pruppacher, 1969: A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J. Atmos. Sci., 26, 1066-1072. 

  6. Boo, K.-O., W.-T. Kwon, and J.-K. Kim, 2004: Vegetation change in the regional surface climate over East Asia due to global warming using BIOME4. Il Nuovo Cimento, 27, 317-327. 

  7. Byon, J.-Y., Y.-J. Choi, and B.-K. Seo, 2010: Characteristics of a wind map over the Korean peninsula based on mesoscale model WRF. Atmosphere, 20, 195-210 (in Korean with English abstract). 

  8. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585. 

  9. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828. 

  10. Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104, 6335-6532. 

  11. Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water drop lets in stagnant air. J. Meteor., 6, 243-248. 

  12. Heo, B.-H., and K.-E. Kim, 2001: A comparison of terminal velocity-drop size relationships to estimate drop size distribution from Doppler radar spectra. J. Korean Meteor. Soc., 37, 143-168 (in Korean with English abstract). 

  13. Hong, J.-Y., and J.-B. Ahn, 2015: Changes of early summer precipitation in the Korean Peninsula and nearby regions based on RCP simulations. J. Climate, 28, 3557-3578. 

  14. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151. 

  15. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. 

  16. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. 

  17. Hong, S.-Y., K.-S. S. Lim, J.-H. Kim, J.-O. J. Lim, and J. Dudhia, 2009: Sensitivity study of cloud-resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteor. Climatol., 48, 61-76. 

  18. Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA, ATBD Version 4.5, 26 pp. 

  19. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M.W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, D13103. 

  20. Im, E.-S., J.-B. Ahn, A. R. Remedio, and W.-T. Kwon, 2008: Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: Focus on the Korean peninsula. Int. J. Climatol., 28, 1861-1877. 

  21. Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2016: Robust intensification of hydroclimatic intensity over East Asia from multi-model ensemble regional projections. Theor. Appl. Climatol., 129, 1241-1254, doi:10.1007/s00704-016-1846-2. 

  22. Joss, J., and A. Waldvogel, 1970: A method to improve the accuracy of radar-measured amounts of precipitation. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 237-238. 

  23. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181. 

  24. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802. 

  25. Kim, K.-E., K.-D. Min, S.-G. Park, D.-I. Lee, K.-M. Lee, I.-H. Yoon, and Y.-S. Moon, 1996: Analysis of fall velocities of precipitation particles and wind fields by a single Doppler radar. J. Korean Meteor. Soc., 32, 51-70 (in Korean with English abstract). 

  26. Kim, S., H.-J. Song, and H. Lee, 2019: Mesoscale features and forecasting guidance of heavy rain types over the Korean peninsula. Atmosphere, 29, 463-480, doi:10.14191/Atmos.2019.29.4.463 (in Korean with English abstract). 

  27. Laws, J. O., 1941: Measurements of the fall-velocity of water-drops and raindrops. Eos, Trans. Amer. Geophys. Union, 22, 709-721. 

  28. Layeghi, B., S. Ghader, A. B. A. Ali, and M. Azadi, 2017: Sensitivity of WRF model simulations to physical parameterization over the Persian Gulf and Oman Sea during summer monsoon. Iran. J. Geophys., 11, 1-19. 

  29. Lee, G., and K. Kim, 2019: International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games (ICE-POP 2018). Abstract, AGU fall meeting, San Francisco, CA, USA. 

  30. Lee, G., K.-E. Kim, K.-D. Min, I.-H. Yoon, and K.-M. Lee, 1998: Development and kinematic properties of tropical stratiform clouds retrieved by single Doppler radar. J. Korean Meteor. Soc., 34, 570-585 (in Korean with English abstract). 

  31. Lhermitte, R. M., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Proc. 9th Wea. Radar Conf. Boston, Amer. Meteor. Soc., 218-223. 

  32. Lim, K.-S. S., 2019: Bulk-type cloud microphysics parameterization in atmospheric models. Atmosphere, 29, 227-239, doi:10.14191/Atmos.2019.29.2.227. 

  33. Lim, K.-S, 2020: The effects of mass-size relationship for snow on the simulated surface precipitation. J. Korean Earth Sci. Soc., 41, 1-18, doi:10.5467/JKESS.2020. 41.1.1. 

  34. Lim, K.-S, and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1. 

  35. Lim, K.-S, and S.-Y. Hong, 2012: Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea. Metero. Atmos. Phys., 118, 199-214, doi:10.1007/s00703-012-0216-6. 

  36. Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci., 26, 1283-1298. 

  37. Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166. 

  38. Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 4773-4798. 

  39. Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665-1677. 

  40. Niu, S., X. Jia, J. Sang, X. Liu, C. Lu, and Y. Liu, 2010: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteor. Climatol., 49, 632-645, doi:10.1175/2009JAMC2208.1. 

  41. Qian, T., F. Zhang, J. Wei, J. He, and Y. Lu, 2020: Diurnal characteristics of gravity waves over the Tibetan Plateau in 2015 summer using 10-km downscaled simulations from WRF-EnKF regional reanalysis. Atmosphere, 11, 631, doi:10.3390/atmos11060631. 

  42. Rogers, R. R., 1964: An extension of the Z-R relationship for Doppler radar. Preprints, 11th Weather Radar Conf., Amer. Meteor. Soc., 158-161. 

  43. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp [Available online at https://opensky.ucar.edu/islandora/object/technotes%3A500/datastream/PDF/view]. 

  44. Spilhaus, A. F., 1948: Raindrop size, shape and falling speed. J. Meteor., 5, 108-110. 

  45. Tang, Q., H. Xiao, C. Guo, and L. Feng, 2014: Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res., 135, 59-75, doi:10.1016/j.atmosres.2013.08.003. 

  46. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095-5115. 

  47. Uplinger, W. G., 1981: A new formula for raindrop terminal velocity. Proc. The 20th Conference on Radar Meteorology, Boston, 389-391. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로