$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Isolation and Characterization of Microbial Strains with Hydrolytic Enzyme Profile from Clay Minerals 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.48 no.1, 2020년, pp.64 - 71  

Lee, Sulhee (Research Group of Healthcare, Korea Food Research Institute) ,  Cho, Eui-Sang (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University) ,  Nam, Young-Do (Research Group of Healthcare, Korea Food Research Institute) ,  Park, So-Lim (Research Group of Healthcare, Korea Food Research Institute) ,  Lim, Seong-Il (Research Group of Healthcare, Korea Food Research Institute) ,  Seo, Dong-Ho (Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University) ,  Kim, Jae-Hwan (Advanced Geo-materials Research Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources) ,  Seo, Myung-Ji (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University)

Abstract AI-Helper 아이콘AI-Helper

A total of 262 bacterial strains were isolated from clay minerals, bentonite and zeolite, in Gyeongsangbukdo, Republic of Korea, and their hydrolytic enzyme activities were analyzed. Most of the isolated strains belonged to Micrococcales and Bacillales order. Of strains, 96 strains produced α...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Although there have been lots of studies on physiological characteristics and biological activities of clay minerals themselves [13], there are not much data published on the isolation of microorganisms from clay minerals and evaluation of their physicochemical activities. In this study, we isolated microorganisms from domestic clay minerals, zeolites and bentonite to investigate cultivable microbial diversity and also evaluated their hydrolytic enzyme activities such as cellulase, pectinase, amylase, and protease. In addition, we finally identified clay minerals-derived microorganisms with multi-hydrolytic enzyme activity to secure the microbial sources from domestic clay minerals and consider their applications into bio-industries.
  • Universal bacterial primer pairs 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-TACGGYTACCTTGTTACGACTT-3') were used to amplify 16S rRNA gene for the bacterial identification. The amplified 16S rRNA genes were sequenced by Macrogensequencing service (Macrogen Inc., Korea) and their sequences then subjected to a homology search against the NCBI database (BLAST) and EzBioCloud (http://www.ezbiocloud.net/eztaxon/) [14]. After the identification of 262 isolated strains, Pseudarthrobacter sp.

대상 데이터

  • One bentonite and four zeolite samples were respectively collected at the Youngil, Gampo and Daebo mining areas located in Gyeongsangbuk-do, Republic of Korea(Table 1). Clay mineral samples were homogenized with distilled water to measure pH and NaCl concentration(%, w/v) by pH meter (Fisher Science Education, USA)and HI 96821 Refractometer (HANNA instruments, USA), respectively.

이론/모형

  • Neighbor-joining (NJ) phylogenetic tree based on 16S rRNA gene sequences showing the position and relationship of strains isolated from domestic bentonite and zeolite samples and other related taxa. The evolutionary distances were calculated using the Kimura two-parameter model. Numbers at nodes indicate bootstrap values (>70%) calculated based on the NJ.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. Carretero MI. 2002. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 21: 155-163. 

  2. Murray HH. 2000. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 17: 207-221. 

  3. Barton CD, Karathanasis AD. 2002. Clay minerals, pp. 187-192. In Lal R (ed.), Encyclopedia of Soil Science, 2nd Ed. Marcel Dekker, New York. 

  4. Guggenheim S, Martin R. 1995. Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clay. Clay Miner. 43: 255-256. 

  5. Slamova R, Trckova M, Vondruskova H, Zraly Z, Pavlik I. 2011. Clay minerals in animal nutrition. Appl. Clay Sci. 51: 395-398. 

  6. Rozic M, Cerjan-Stefanovic S, Kurajica S, Van?ina V, Hodzic E. 2000. Ammoniacal nitrogen removal from water by treatment with clays and zeolites. Water Res. 34: 3675-3681. 

  7. Eroglu N, Emekci M, Athanassiou CG. 2017. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 97: 3487-3499. 

  8. Al Dwairi RA, Al-Rawajfeh AE. 2012. Recent patents of natural zeolites applications in environment, agriculture and pharmaceutical industry. Recent Patents Chem. Eng. 5: 20-27. 

  9. Saengmee-anupharb S, Srikhirin T, Thaweboon B, Thaweboon S, Amornsakchai T, Dechkunakorn S, et al. 2013. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms. Asian Pac. J. Trop. Biomed. 3: 47-52. 

  10. SivaRaman H, Chandwadkar A, Baliga SA, Prabhune AA. 1994. Effect of synthetic zeolite on ethanolic fermentation of sugarcane molasses. Enzyme Microb. Technol. 16: 719-722. 

  11. Uddin F. 2018. Montmorillonite: An Introduction to Properties and Utilization, pp. 3-23. In Zoveidavianpoor M (ed.), Current Topics in the Utilization of Clay in Industrial and Medical Applications, IntechOpen, London. 

  12. Kang J, Chung WH, Nam Y Do, Kim D, Seo SM, Lim S Il, et al. 2018. Impact of clay minerals on bacterial diversity during the fermentation process of kimchi. Appl. Clay Sci. 154: 64-72. 

  13. Mueller B. 2015. Experimental interactions between clay minerals and bacteria: A Review. Pedosphere 25: 799-810. 

  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. 

  15. Lopez-Fernandez M, Fernandez-Sanfrancisco O, Moreno-Garcia A, Martin-Sanchez I, Sanchez-Castro I, Merroun ML. 2014. Microbial communities in bentonite formations and their interactions with uranium. Appl. Geochem. 49: 77-86. 

  16. Busse HJ. 2016. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. Nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int. J. Syst. Evol. Microbiol. 66: 9-37. 

  17. Liu Y, Du J, Lai Q, Zeng R, Ye D, Xu J, Shao Z. 2017. Proposal of nine novel species of the Bacillus cereus group. Int. J. Syst. Evol. Microbiol. 67: 2499-2508. 

  18. Martin PA, Travers RS. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442. 

  19. Eppard M, Krumbein WE, Koch C, Rhiel E, Staley JT, Stackebrandt E. 1996. Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch. Microbiol. 166: 12-22. 

  20. Seo DH, Cho ES, Hwang CY, Yoon DJ, Chun J, Jang Y, et al. 2019. Cultivable microbial diversity in domestic bentonites and their hydrolytic enzyme production. Microbiol. Biotechnol. Lett. 47: 125-131. 

  21. Li DF, Ding HC, Zhou T. 2013. Covalent immobilization of mixed proteases, trypsin and chymotrypsin, onto modified polyvinyl chloride microspheres. J. Agric. Food Chem. 61: 10447-10453. 

  22. Rasooli I, Astaneh SDA, Borna H, Barchini KA. 2008. A thermostable ${\alpha}$ -amylase producing natural variant of Bacillus spp. isolated from soil in Iran. Am. J. Agric. Biol. Sci. 3: 591-596. 

  23. Kalyani G, Rajesh EM. 2018. Production and purification of amylase from Bacillus subtilis isolated from soil. Int. J. Eng. Manag. Res. 8: 246-254. 

  24. O AA, Fagade OE. 2006. Growth pattern and structural nature of amylases produced by some Bacillus species in starchy substrates. Afr. J. Biotechnol. 5: 440-444. 

  25. Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, et al. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386. 

  26. Behera BC, Mishra RR, Singh SK, Dutta SK, Thatoi H. 2016. Cellulase from Bacillus licheniformis and Brucella sp. isolated from mangrove soils of Mahanadi river delta, Odisha, India. Biocatal. Biotransformation 34: 44-53. 

  27. Kashyap DR, Vohra PK, Chopra S, Tewari R. 2001. Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77: 215-227. 

  28. Ruiz C, Pastor FIJ, Diaz P. 2005. Isolation of lipid- and polysaccharide- degrading micro-organisms from subtropical forest soil, and analysis of lipolytic strain Bacillus sp. CR-179. Lett. Appl. Microbiol. 40: 218-227. 

  29. Ghosh A, Maity B, Chakrabarti K, Chattopadhyay D. 2007. Bacterial diversity of east Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microb. Ecol. 54: 452-459. 

  30. Bhunia B, Basak B, Dey A. 2012. A review on production of serine alkaline protease by Bacillus spp. J. Biochem. Technol. 3: 448-457. 

  31. Saggu SK, Mishra PC. 2017. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil. PLoS One 12: e0188724. 

  32. Luang-In V, Yotchaisarn M, Saengha W, Udomwong P, Deeseenthum S, Maneewan K. 2019. Protease-producing bacteria from soil in nasinuan community forest, mahasarakham province, Thailand. Biomed. Pharmacol. J. 12: 587-595. 

  33. de Veras BO, dos Santos YQ, Diniz KM, Carelli GSC, dos Santos EA. 2018. Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermostable marine Bacillus subtilis strain SR60. F1000Res 7: 1704. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로