$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수학적 모델링의 구현을 위한 교사 교육: 사례 연구
Teacher Education for Mathematical Modeling: a Case Study 원문보기

East Asian mathematical journal, v.36 no.2, 2020년, pp.173 - 201  

김연

Abstract AI-Helper 아이콘AI-Helper

Mathematical modeling has been emphasized because it offers important opportunities for students to both apply their learning of mathematics to a situation and to explore the mathematics involved in the context of the situation. However, unlike its importance, mathematical modeling has not been grou...

주제어

표/그림 (23)

질의응답

핵심어 질문 논문에서 추출한 답변
우리나라 2015 개정 수학 교육과정에서 정의한 수학적 모델링이란? Common Core State Standards for Mathematics(이하, CCSSM)는 수학적으로 능숙한 사람은 일상, 직장 또는 사회에서 발생하는 문제에 수학을 적용하여 해결하려는 태도를 보이고 있다고 설명하는데(National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010), 수학적 모델링은 학생들이 그러한 면모를 기를 기회를 제공한다. 우리나라 2015 개정 수학 교육과정은 문제 해결 역량 중 한 가지로 수학적 모델링을 포함하고 있으며, “실생활 문제 상황을 수학적으로 나타내고 분석하여 결론을 도출하고 이를 상황에 맞게 해석하는 능력”으로 정의하고 있다(박경미 외, 2015, p. 40).
해석적 시스템을 통해 정체성이 형성되는 과정에서 중요한 것은? Gee(2000)에 따르면, 우리가 우리 자신을 해석하는 방식과 다른 사람들에 의해 우리가 인식되는 방식이 해석적 시스템에 영향을 미치는데, 그러한 해석적 시스템을 통해 정체성이 형성된다. 이러한 과정에 지식과 정체성 간의 상호작용도 중요하다. 정체성은 어느 상황에 이루어지는 담화 또는 공동체의 일부로 간주되는 담화를 통해 개발되는데, 신념과 가치의 시스템으로서 담화는 사회적 관행에 존재하고 언어를 통해 발현된다.
CCSSM은 수학적 모델링의 과정을 어떻게 구분하는가? CCSSM은 수학적 모델링의 과정을 가정 만들기, 변수의 선정 및 수량화와 표상하기, 변수 간의 관계 파악하기, 마지막으로 수학적 결과 해석하고 반성하기 등 네 단계로 구분한다. 또한, 수학적 모델링은 ‘복잡한 상황’을 다루는 것을 전제함으로써, 기존의 전형적인 수학 문제의 이용을 배제한다는 것을 의미한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (51)

  1. 김민경, 민선희, 강선미(2009). 초등교사들의 수학적 모델링에 대한 인식 조사 연구. 한국학교수학회논문집, 12(4), 411-431. 

  2. 박경미, 박선화, 권점례, 윤상혁, 강현영, 이경진, . . . 전인태(2015). 2015 개정 수학과 교육과정 시안 개발 연구 (연구보고 BD15110002). 서울, 한국: 한국과학창의재단. 

  3. 박선영, 한선영(2018). 수학적 모델링 과정을 반영한 교과서 문제 재구성 예시 및 적용. 수학교육, 57(3), 289-309. 

  4. 서지희, 윤종국, 이광호(2013). 중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수 학습 자료의 개발 및 적용: 쓰나미를 소재로. 학교수학, 15(4), 785-799. 

  5. 신은주, & 이종희(2004). 모델링 과정에서 지각적, 인지적, 메타인지적 활동의 상호작용에 관한 사례연구. 학교수학, 6(2), 153-179. 

  6. 오영열, 박주경(2019). 초등수학에 적용된 수학적 모델링 과제 유형 탐색, 한국초등교육, 30(10), 87-99. 

  7. 조원주, 권오남(2002). 중학교 함수영역에서 수학적 모델링을 활용한 수행과제와 구체적 평가기준안 개발. 수학교육 논문집, 14, 349-370. 

  8. 최지선(2017). 수학적 모델링 수업에 대한 초등 교사의 인식. 수학교육학연구, 27(2), 313-328. 

  9. 최희선, 한혜숙(2018). 수학적 모델링 기반 수업이 중학교 1학년 학생들의 수학적 문제제기 능력에 미치는 영향. 학습자중심교과교육연구, 18(14), 755-782. 

  10. 황혜정(2007). 수학적 모델링의 이해: 국내 연구 결과 분석을 중심으로. 학교수학, 9(1), 65-97. 

  11. Anhalt, C. O., & Cortez, R. (2016). Developing understanding of mathematical modeling in secondary teacher preparation. Journal of Mathematics Teacher Education, 19(6), 523-545. 

  12. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. 

  13. Beijaard, D., Meijer, P. C., & Verloop, N. (2004). Reconsidering research on teachers' professional identity. Teaching and Teacher Education, 20(2), 107-128. 

  14. Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58. 

  15. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects: State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68. 

  16. Boaler, J. (2001). Mathematical modelling and new theories of learning. International Journal of the IMA, 20(3), 121-128. 

  17. Boaler, J., & Brodie, K. (2004). The importance, nature, and impact of teacher questions. Paper presented at the Proceedings of the twenty-sixth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. 

  18. Borko, H., Liston, D., & Whitcomb, J. A. (2007). Genres of empirical research in teacher education. Journal of Teacher Education, 58(1), 3-11. 

  19. Chan, E. C. M. (2008). Using model-eliciting activities for primary mathematics classrooms. The Mathematics Educator, 11(1), 47-66. 

  20. Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational Evaluation and Policy Analysis, 25(2), 119-142. 

  21. Connelly, F. M., & Clandinin, D. J. (1999). Shaping a professional identity: Stories of educational practice. London, ON: The Althouse Press. 

  22. Doerr, H. M., & Lesh, R. (2003). A modeling perspective on teacher development. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: A models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 125-140). Mahwah, NJ: Lawrence Erlbaum Associates. 

  23. English, L. (2003). Mathematical modelling with young learners. In S. J. Lamon, W. A. Parker, & K. Houston (Eds.), Mathematical modelling (pp. 3-17). West Sussex, England: Woodhead Publishing. 

  24. Ferri, R. B. (2013). Mathematical modeling-The teacher's responsibility. In B. Dickman & A. Sanfratello (Eds.), Proceedings of Converence on Mathematical Modeling (pp. 26-31). New York, NY: Teachers College Columbia University. 

  25. Ferri, R. B., & Blum, W. (2009). Mathematical modelling in teacher education-Experiences from a modelling seminar. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of CERME 6 (pp. 2046-2055). Lyon, France: European Society for Research in Mathematics Education. 

  26. Ferri, R. B., & Blum, W. (2013). Barriers and motivations of primary teachers for implementing modelling in mathematics lessons. Paper presented at the Congress of European Research in Mathematics Education. 

  27. Flores, M. A., & Day, C. (2006). Contexts which shape and reshape new teachers' identities: A multi-perspective study. Teaching and Teacher Education, 22(2), 219-232. 

  28. Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199-219. 

  29. Gee, J. P. (2000). Identity as an analytic lens for research in education. Review of Research in Education, 25(1), 99-125. 

  30. Guest, G., MacQueen, K., & Namey, E. (2012). Applied thematic analysis. Thousand Oaks, CA: Sage. 

  31. Hewson, P. W., & A'B. Hewson, M. G. (1988). An appropriate conception of teaching science: A view from studies of science learning. Science Education, 72(5), 597-614. 

  32. Jung, H., & Brady, C. (2016). Roles of a teacher and researcher during in situ professional development around the implementation of mathematical modeling tasks. Journal of Mathematics Teacher Education, 19(2-3), 277-295. 

  33. Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key components of models and modeling. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 361-383). Mahwah, NJ: Lawrence Erlbaum Associates. 

  34. Lesh, R., & Doerr, H. M. (2003a). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3-33). Mahwah, NJ: Lawrence Erlbaum Associates. 

  35. Lesh, R., & Doerr, H. M. (Eds.). (2003b). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah, NJ: Lawrence Erlbaum Associates. 

  36. Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2&3), 157-189. 

  37. Lytle, S. L., & Cochran-Smith, M. (1994). Inquiry, knowledge, and practice. Teacher research and educational reform, 93, 22-51. 

  38. MacLure, M. (1993). Arguing for your self: Identity as an organising principle in teachers' jobs and lives. British Educational Research Journal, 19(4), 311-322. 

  39. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics. 

  40. National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers. 

  41. Olsen, B. (2008). Teaching what they learn, learning what they live. Boulder, CO: Paradigm Publishers. 

  42. Pollak, H. (2007). Mathematical modelling - a conversation with Henry Pollak. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics Education: The 14th ICMI Study (pp. 109-120). Boston, MA: Springer. 

  43. Saldana, J. (2013). The coding manual for qualitative researchers (2 ed.). Los Angeles: SAGE 

  44. Schorr, R. Y., & Lesh, R. (2003). A modelling approach for providing teacher development. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivismen - Models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 141-157). Mahwah, NJ: Lowrence Erlbaum Associates. 

  45. Sfard, A., & Prusak, A. (2005). Telling identities: In search of an analytic tool for investigating learning as a culturally shaped activity. Educational Researcher, 34(4), 14-22. 

  46. Smith, M. S., & Stein, M. K. (2011). 5 practices for orchestrating productive mathematics discussions. Reston, VA: National Council of Teachers of Mathematics. 

  47. Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational Research Journal, 33(2), 455-488. 

  48. Swetz, F., & Hartzler, J. S. (1991). Mathematical modeling in the secondary school curriculum. Reston, VA: National Council of Teachers of Mathematics. 

  49. Thomas, L., & Beauchamp, C. (2007). Learning to live well as teachers in a changing world: Insights into developing a professional identity in teacher education. The Journal of Educational Thought, 41(3), 229-243. 

  50. Zawojewski, J. (2013). Problem solving versus modeling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students'mathematical modeling competencies: ICTMA 13 (pp. 237-243). Dordrecht: Springer Netherlands. 

  51. Zbiek, R. M., & Conner, A. (2006). Beyond motivation: exploring mathematical modeling as a context for deepening students' understandings of curricular mathematics. Educational Studies in Mathematics, 63(1), 89-112. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로