$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Objectives To review the epigenetic modifications involved in chronic pain and to improve individualized intervention for the chronic pain. Methods Focused literature review. Results Significant laboratory and clinical data support that epigenetic modifications have a potential role for development ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 하지만 만성 통증에 대한 한의학적인 치료의 후성유 전적 기전에 대해서는 연구가 없는 실정이다. 이에 저자는 만성 통증이 발생하고 지속되는 기전에서 후성유 전이 미치는 영향에 대하여 이론적 배경 및 최신 연구 동향을 고찰하였으며, 이를 통해 향후 침이나 한약 등의 한의학적 치료를 활용한 후성유전학적 실험 연구를 위한 문헌적 근거를 마련하고자 본 연구를 시행하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
통증의 정의는? 통증은 실제적 혹은 잠재된 조직 손상이나 이와 동반 되는 불쾌한 감각 혹은 정서적 체험으로 정의된다1). 조직 손상으로 나타나는 급성 통증이 손상으로부터 개체를 보호하는 자연적인 방어 기전으로 역할하는 반면 2), 3개월 이상 지속되는 만성 통증은 초기 손상이나 상해 (염증성 혹은 신경 손상)의 기간 이후에도 지속되어 질병의 부담을 증가시키고 면역계, 정서, 수면 등과 관련된 삶의 질을 악화시키므로 급성 통증과는 다른 이해와 치료적 접근을 요구한다3) .
쥐의 편측 좌골신경에 만성 신경병증성 통증을 유발한 후 전기침치료(족삼리, 양릉천)를 시행하였을 때 어떤 분석 결과가 나왔는가? 쥐의 편측 좌골신경에 만성 신경병증성 통증을 유발한 후 12주간 전기침치료(족삼리, 양릉천)를 시행한 결과 감소되었던열적 통증 역치가 회복되었고, 해마에서 신경세포의 세포과정에 관여하는 시스틴(cysteine) 대사, 발린, 류신, 이소류신 저하, MAPK signaling과 관련된 19종의 단백체 발현이 변화하였다. 이를 통해 아미노산 대사, MAPK 활성화와 관련된 해마의 단백체 발현 변화가 침치료의 진통효과를 매개한다는 것을 알 수 있다96).
후성유전적 변화의 원인은? 후성유전학(epigenetics)은 DNA 염기서열의 변화 없 이 유전자 발현과 형질 변화에 관여하는 기전을 연구하는 학문이다. 후성유전적 변화는 개체와 환경 사이의 역동적인 상호작용으로 나타나게 되는데 모체 내 환경, 독소, 약물, 식이, 스트레스 등의 환경요인이 원인이 되어 DNA 메틸화, 히스톤 변형, RNA 간섭과 같은 후성유전적 과정이 나타난다. 일란성 쌍둥이에서 염증반응 및 만성 통증의 표현형이 다르게 나타나는 것이 발견되고, 후성유전적 변화가 염증성사이토카인 대사, 스테로이드 민감성, 오피오이드 감수성, 신경가소성 등에 중요한 역할을 하는 것이 밝혀지면서 후성유전학적 기전이 만성 통증의 핵심 요인으로 주목되고 있으며, 만성 통증의 기전을 이해하고 치료법을 개발하는데 있어서 후성유전학적 접근이 각광받고 있다6,7).
질의응답 정보가 도움이 되었나요?

참고문헌 (98)

  1. Crofford LJ. Chronic pain: where the body meets the brain. Transactions of the American Clinical and Climatological Association. 2015;126:167-83. 

  2. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Annals of Internal Medicine. 2004;140(6):441-51. 

  3. Bali KK, Kuner R. Noncoding RNAs: key molecules in understanding and treating pain. Trends in Molecular Medicine. 2014;20(8):437-48. 

  4. Woolf CJ, Decosterd I. Implications of recent advances in the understanding of pain pathophysiology for the assessment of pain in patients. Pain. 1999;Suppl 6:S141-7. 

  5. Kissin I. The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesthesia and Analgesia. 2010;110(3):780-9. 

  6. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, Berdasco M, Fraga MF, O'Hanlon TP, Rider LG, Jacinto FV, Lopez-Longo FJ, Dopazo J, Forn M, Peinado MA, Carreno L, Sawalha AH, Harley JB, Siebert R, Esteller M, Miller FW, Ballestar E. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Research. 2010;20(2):170-9. 

  7. Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 2015;38(4):237-46. 

  8. Wu C, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science. 2001;293(5532):1103-5. 

  9. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693-705. 

  10. Guan Z, Giustetto M, Lomvardas S, Kim JH, Miniaci MC, Schwartz JH, Thanos D, Kandel ER. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell. 2002;111(4):483-93. 

  11. Gregory PD, Wagner K, Horz W. Histone acetylation and chromatin remodeling. Experimental Cell Research. 2001;265(2):195-202. 

  12. Fan S, Zhang X. CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochemical and Biophysical Research Communications. 2009;383(4):421-5. 

  13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97. 

  14. Loeser JD, Melzack R. Pain: an overview. Lancet. 1999;353(9164):1607-9. 

  15. Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg. 2003;97(4):1108-16. 

  16. Sherman SM, Guillery RW. Functional organization of thalamocortical relays. J Neurophysiol. 1996;76(3):1367-95. 

  17. Voisin DL, Guy N, Chalus M, Dallel R. Nociceptive stimulation activates locus coeruleus neurones projecting to the somatosensory thalamus in the rat. J Physiol. 2005;566(Pt 3):929-37. 

  18. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463-84. 

  19. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev. 2009;60(1):214-25. 

  20. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377-91. 

  21. Zhuo M, Gebhart GF. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J Neurophysiol. 1997;78(2):746-58. 

  22. Carlson JD, Maire JJ, Martenson ME, Heinricher MM. Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J Neurosci. 2007;27(48):13222-31. 

  23. Millan MJ. Descending control of pain. Progress in Neurobiology. 2002;66(6):355-474. 

  24. Jasmin L, Rabkin SD, Granato A, Boudah A, Ohara PT. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature. 2003;424(6946):316-20. 

  25. Yaksh TL. Opioid receptor systems and the endorphins: a review of their spinal organization. J Neurosurg. 1987;67(2):157-76. 

  26. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288(5472):1765-9. 

  27. Gureje O, Von Korff M, Simon GE, Gater R. Persistent pain and well-being: a World Health Organization Study in Primary Care. JAMA. 1998;280(2):147-51. 

  28. Muralidharan A, Smith MT. Pain, analgesia and genetics. The Journal of Pharmacy and Pharmacology. 2011;63(11):1387-400. 

  29. Smith MT, Muralidharan A. Pharmacogenetics of pain and analgesia. Clinical genetics. 2012;82(4):321-30. 

  30. Seo S, Grzenda A, Lomberk G, Ou XM, Cruciani RA, Urrutia R. Epigenetics: a promising paradigm for better understanding and managing pain. The Journal of Pain: Official Journal of the American Pain Society. 2013;14(6):549-57. 

  31. Kuner R. Central mechanisms of pathological pain. Nat Med. 2010;16(11):1258-66. 

  32. Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol. 2008;121(1):57-63 e3. 

  33. Riccio A. Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nature Neuroscience. 2010;13(11):1330-7. 

  34. Hammer P, Banck MS, Amberg R, Wang C, Petznick G, Luo S, Khrebtukova I, Schroth GP, Beyerlein P, Beutler AS. mRNA-seq with agnostic splice site discovery for nervous system transcriptomics tested in chronic pain. Genome Res. 2010;20(6):847-60. 

  35. Gangadharan V, Kuner R. Pain hypersensitivity mechanisms at a glance. Dis Model Mech. 2013;6(4):889-95. 

  36. Denk F, McMahon SB. Chronic pain: emerging evidence for the involvement of epigenetics. Neuron. 2012;73(3):435-44. 

  37. Besson JM. The neurobiology of pain. Lancet. 1999;353(9164):1610-5. 

  38. McCall CE, El Gazzar M, Liu T, Vachharajani V, Yoza B. Epigenetics, bioenergetics, and microRNA coordinate gene-specific reprogramming during acute systemic inflammation. Journal of Leukocyte Biology. 2011;90(3):439-46. 

  39. Fukuoka T, Kondo E, Dai Y, Hashimoto N, Noguchi K. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2001;21(13):4891-900. 

  40. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A. 2004;101(28):10458-63. 

  41. Uchida H, Ma L, Ueda H. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2010;30(13):4806-14. 

  42. Uchida H, Sasaki K, Ma L, Ueda H. Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury. Neuroscience. 2010;166(1):1-4. 

  43. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2-15. 

  44. Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2004;24(38):8310-21. 

  45. Geranton SM, Morenilla-Palao C, Hunt SP. A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2007;27(23):6163-73. 

  46. Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011;32(7):335-43. 

  47. Haettig J, Stefanko DP, Multani ML, Figueroa DX, McQuown SC, Wood MA. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn Mem. 2011;18(2):71-9. 

  48. Kiguchi N, Kobayashi Y, Maeda T, Fukazawa Y, Tohya K, Kimura M, Kishioka S. Epigenetic augmentation of the macrophage inflammatory protein 2/C-X-C chemokine receptor type 2 axis through histone H3 acetylation in injured peripheral nerves elicits neuropathic pain. J Pharmacol Exp Ther. 2012;340(3):577-87. 

  49. Imai S, Ikegami D, Yamashita A, Shimizu T, Narita M, Niikura K, Furuya M, Kobayashi Y, Miyashita K, Okutsu D, Kato A, Nakamura A, Araki A, Omi K, Nakamura M, James Okano H, Okano H, Ando T, Takeshima H, Ushijima T, Kuzumaki N, Suzuki T. Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain. Brain: a Journal of Neurology. 2013;136(Pt 3):828-43. 

  50. Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20(18):6891-903. 

  51. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P, Dona G, Fossati G, Sozzani S, Azam T, Bufler P, Fantuzzi G, Goncharov I, Kim SH, Pomerantz BJ, Reznikov LL, Siegmund B, Dinarello CA, Mascagni P. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci U S A. 2002;99(5):2995-3000. 

  52. Chiechio S, Caricasole A, Barletta E, Storto M, Catania MV, Copani A, Vertechy M, Nicolai R, Calvani M, Melchiorri D, Nicoletti F. L-Acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors. Molecular Pharmacology. 2002;61(5):989-96. 

  53. Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RWt, Nicoletti F. Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci. 2010;31(4):153-60. 

  54. Kim CS, Hwang CK, Choi HS, Song KY, Law PY, Wei LN, Loh HH. Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the mu opioid receptor gene. The Journal of Biological Chemistry. 2004;279(45):46464-73. 

  55. Crow M, Denk F, McMahon SB. Genes and epigenetic processes as prospective pain targets. Genome Med. 2013;5(2):12. 

  56. Geranton SM, Fratto V, Tochiki KK, Hunt SP. Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn. Molecular Pain. 2008;4:35. 

  57. Tochiki KK, Cunningham J, Hunt SP, Geranton SM. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states. Mol Pain. 2012;8:14. 

  58. Tajerian M, Alvarado S, Millecamps M, Dashwood T, Anderson KM, Haglund L, Ouellet J, Szyf M, Stone LS. DNA methylation of SPARC and chronic low back pain. Mol Pain. 2011;7:65. 

  59. Viet CT, Ye Y, Dang D, Lam DK, Achdjian S, Zhang J, Schmidt BL. Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain. Pain. 2011;152(10):2323-32. 

  60. LaCroix-Fralish ML, Austin JS, Zheng FY, Levitin DJ, Mogil JS. Patterns of pain: meta-analysis of microarray studies of pain. Pain. 2011;152(8):1888-98. 

  61. Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR, Nassar MA, Abrahamsen B, Dickenson A, Cobb BS, Merkenschlager M, Wood JN. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci. 2010;30(32):10860-71. 

  62. Kynast KL, Russe OQ, Moser CV, Geisslinger G, Niederberger E. Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain. 2013;154(3):368-76. 

  63. Sakai A, Suzuki H. Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats. Biochemical and Biophysical Research Communications. 2013;435(2):176-81. 

  64. Willemen HL, Huo XJ, Mao-Ying QL, Zijlstra J, Heijnen CJ, Kavelaars A. MicroRNA-124 as a novel treatment for persistent hyperalgesia. Journal of Neuroinflammation. 2012;9:143. 

  65. Fossat P, Dobremez E, Bouali-Benazzouz R, Favereaux A, Bertrand SS, Kilk K, Leger C, Cazalets JR, Langel U, Landry M, Nagy F. Knockdown of L calcium channel subtypes: differential effects in neuropathic pain. J Neurosci. 2010;30(3):1073-85. 

  66. Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA, Drutel G, Leger C, Calas A, Nagy F, Landry M. Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. The EMBO Journal. 2011;30(18):3830-41. 

  67. Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H. miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain: A Journal of Neurology. 2013;136(Pt 9):2738-50. 

  68. Chen HP, Zhou W, Kang LM, Yan H, Zhang L, Xu BH, Cai WH. Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury. Neurochemical Research. 2014;39(1):76-83. 

  69. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV. Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience. 2012;15(8):1117-9. 

  70. Rainville P, Bushnell MC, Duncan GH. Representation of acute and persistent pain in the human CNS: potential implications for chemical intolerance. Annals of the New York Academy of Sciences. 2001;933:130-41. 

  71. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410-5. 

  72. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nature reviews Neuroscience. 2013;14(7):502-11. 

  73. Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends in Neurosciences. 2002;25(6):319-25. 

  74. Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ. Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med. 2011;17(11):1448-55. 

  75. Burgess SE, Gardell LR, Ossipov MH, Malan TP Jr, Vanderah TW, Lai J, Porreca F. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2002;22(12):5129-36. 

  76. Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F, Battaglia G, Mathe AA, Pittaluga A, Lionetto L, Simmaco M, Nicoletti F. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(12):4804-9. 

  77. Tajerian M, Alvarado S, Millecamps M, Vachon P, Crosby C, Bushnell MC, Szyf M, Stone LS. Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex. PloS One. 2013;8(1):e55259. 

  78. Imai S, Saeki M, Yanase M, Horiuchi H, Abe M, Narita M, Kuzumaki N, Suzuki T. Change in microRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2011;31(43):15294-9. 

  79. Poh KW, Yeo JF, Ong WY. MicroRNA changes in the mouse prefrontal cortex after inflammatory pain. Eur J Pain. 2011;15(8):801 e1-12. 

  80. Cherng CH, Lee KC, Chien CC, Chou KY, Cheng YC, Hsin ST, Lee SO, Shen CH, Tsai RY, Wong CS. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. J Formos Med Assoc. 2014;113(8):513-20. 

  81. Bai G, Wei D, Zou S, Ren K, Dubner R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Molecular Pain. 2010;6:51. 

  82. Ni J, Gao Y, Gong S, Guo S, Hisamitsu T, Jiang X. Regulation of mu-opioid type 1 receptors by microRNA134 in dorsal root ganglion neurons following peripheral inflammation. Eur J Pain. 2013;17(3):313-23. 

  83. Buchheit T, Van de Ven T, Shaw A. Epigenetics and the transition from acute to chronic pain. Pain Med. 2012;13(11):1474-90. 

  84. Geranton SM. Targeting epigenetic mechanisms for pain relief. Current Opinion in Pharmacology. 2012;12(1):35-41. 

  85. Fu SP, He SY, Xu B, Hu CJ, Lu SF, Shen WX, Huang Y, Hong H, Li Q, Wang N, Liu XL, Liang F, Zhu BM. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene. PloS One. 2014;9(4):e94604. 

  86. Wang JY, Li H, Ma CM, Wang JL, Lai XS, Zhou SF. MicroRNA profiling response to acupuncture therapy in spontaneously hypertensive rats. Evid Based Complement Alternat Med. 2015;2015:204367. 

  87. Wang JY, Li H, Ma CM, Wang JL, Lai XS, Zhou SF. Acupuncture may exert its therapeutic effect through microRNA-339/Sirt2/NFkappaB/FOXO1 axis. BioMed Research International. 2015;2015:249013. 

  88. Wang N, Lu SF, Chen H, Wang JF, Fu SP, Hu CJ, Yang Y, Liang FR, Zhu BM. A protocol of histone modification-based mechanistic study of acupuncture in patients with stable angina pectoris. BMC Complement Altern Med. 2015;15:139. 

  89. Hsieh HY, Chiu PH, Wang SC. Epigenetics in traditional chinese pharmacy: a bioinformatic study at pharmacopoeia scale. Evid Based Complement Alternat Med. 2011;2011:816714. 

  90. Hsieh HY, Chiu PH, Wang SC. Histone modifications and traditional Chinese medicinals. BMC Complement Altern Med. 2013;13:115. 

  91. Hong M, Wang N, Tan HY, Tsao SW, Feng Y. MicroRNAs and Chinese medicinal herbs: new possibilities in cancer therapy. Cancers (Basel). 2015;7(3):1643-57. 

  92. Zhao HL, Sui Y, Qiao CF, Yip KY, Leung RK, Tsui SK, Lee HM, Wong HK, Zhu X, Siu JJ, He L, Guan J, Liu LZ, Xu HX, Tong PC, Chan JC. Sustained antidiabetic effects of a berberine-containing Chinese herbal medicine through regulation of hepatic gene expression. Diabetes. 2012;61(4):933-43. 

  93. Zhang Y, Wang YH, Zhang XH, Ge HY, Arendt-Nielsen L, Shao JM, Yue SW. Proteomic analysis of differential proteins related to the neuropathic pain and neuroprotection in the dorsal root ganglion following its chronic compression in rats. Exp Brain Res. 2008;189(2):199-209. 

  94. Bai L, Tian J, Zhong C, Xue T, You Y, Liu Z, Chen P, G ong Q, A i L, Q in W, Dai J , Liu Y. A cupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study. Molecular Pain. 2010;6:73. 

  95. Huang W, Pach D, Napadow V, Park K, Long X, Neumann J, Maeda Y, Nierhaus T, Liang F, Witt CM. Characterizing acupuncture stimuli using brain imaging with FMRI--a systematic review and meta-analysis of the literature. PloS One. 2012;7(4):e32960. 

  96. Gao YH, Chen SP, Wang JY, Qiao LN, Meng FY, Xu QL, Liu JL. Differential proteomics analysis of the analgesic effect of electroacupuncture intervention in the hippocampus following neuropathic pain in rats. BMC Complement Altern Med. 2012;12:241. 

  97. Gao Y, Chen S , Xu Q, Yu K, Wang J , Qiao L , Meng F, Liu J. Proteomic analysis of differential proteins related to anti-nociceptive effect of electroacupuncture in the hypothalamus following neuropathic pain in rats. Neurochemical Research. 2013;38(7):1467-78. 

  98. Sun J , Shao XM, F ang F, S hen Z, Wu YY, Fang J Q. Electroacupuncture alleviates retrieval of pain memory and its effect on phosphorylation of cAMP response element-binding protein in anterior cingulate cortex in rats. Behav Brain Funct. 2015;11:9. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로