$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로
Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image 원문보기

한국측량학회지 = Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, v.38 no.1, 2020년, pp.23 - 33  

최석근 (Dept. of Civil Engineering, Chungbuk National University) ,  이승기 (Terrapix) ,  강연빈 (Dept. of Civil Engineering, Chungbuk National University) ,  성선경 (Dept. of Civil Engineering, Chungbuk National University) ,  최도연 (Terrapix) ,  김광호 (Dept. of Civil Engineering, Chungbuk National University)

초록
AI-Helper 아이콘AI-Helper

최근 UAV (Unmanned Aerial Vehicle)를 이용하여 고해상도 영상을 편리하게 취득할 수 있게 되면서 저비용으로 소규모 지역의 관측 및 공간정보 제작이 가능하게 되었다. 특히, 농업환경 모니터링을 위하여 작물생산 지역의 피복지도 생성에 대한 연구가 활발히 진행되고 있으며, 랜덤 포레스트와 SVM (Support Vector Machine) 및 CNN(Convolutional Neural Network) 을 적용하여 분류 성능을 비교한 결과 영상분류에서 딥러닝 적용에 대하여 활용도가 높은 것으로 나타났다. 특히, 위성영상을 이용한 피복분류는 위성영상 데이터 셋과 선행 파라메터를 사용하여 피복분류의 정확도와 시간에 대한 장점을 가지고 있다. 하지만, 무인항공기 영상은 위성영상과 공간해상도와 같은 특성이 달라 이를 적용하기에는 어려움이 있다. 이러한 문제점을 해결하기 위하여 위성영상 데이터 셋이 아닌 UAV를 이용한 데이터 셋과 국내의 소규모 복합 피복이 존재하는 농경지 분석에 활용이 가능한 딥러닝 알고리즘 적용 연구를 수행하였다. 본 연구에서는 최신 딥러닝의 의미론적 영상분류인 DeepLab V3+, FC-DenseNet (Fully Convolutional DenseNets), FRRN-B (Full-Resolution Residual Networks) 를 UAV 데이터 셋에 적용하여 영상분류를 수행하였다. 분류 결과 DeepLab V3+와 FC-DenseNet의 적용 결과가 기존 감독분류보다 높은 전체 정확도 97%, Kappa 계수 0.92로 소규모 지역의 UAV 영상을 활용한 피복분류의 적용가능성을 보여주었다.

Abstract AI-Helper 아이콘AI-Helper

Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for ...

주제어

표/그림 (24)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 또한, 본 연구에서 분류 및 탐지하고자 하는 대상물질이 농경지이기 때문에, 효과적인 분류를 위한 고해상도 자료가 요구된다. 따라서 Zenmuse X3를 활용하여 고해상도 정사영상을 제작하여 활용하고자 하였다. Fig.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
SVM, RF 등의 기계학습 알고리즘은 기존의 방법에 비하여 어떠한 장점과 한계점이 있는가? 기존의 분류기법으로는 SVM, RF 등의 기계학습 알고리즘이 적용·연구되고 기존의 방법에 비하여 높은 정확도를 확보하고 있지만 상대적으로 무감독 분류에 비하여 제작 및 갱신에 많은 시간과 비용이 요구되는 한계가 있다(Kwak et al., 2017;Onojeghuo et al.
위성영상을 이용한 피복분류의 장점은 무엇인가? 특히, 농업환경 모니터링을 위하여 작물생산 지역의 피복지도 생성에 대한 연구가 활발히 진행되고 있으며, 랜덤 포레스트와 SVM (Support Vector Machine) 및 CNN(Convolutional Neural Network) 을 적용하여 분류 성능을 비교한 결과 영상분류에서 딥러닝 적용에 대하여 활용도가 높은 것으로 나타났다. 특히, 위성영상을 이용한 피복분류는 위성영상 데이터 셋과 선행 파라메터를 사용하여 피복분류의 정확도와 시간에 대한 장점을 가지고 있다. 하지만, 무인항공기 영상은 위성영상과 공간해상도와 같은 특성이 달라 이를 적용하기에는 어려움이 있다.
UAV를 통해 취득된 영상을 이용한 토지 피복분류는 어떠한 장점으로 인해 다양한 연구가 수행되고 있는가? 최근 UAV (Unmanned Aerial Vehicle)를 이용한 고해상도 영상취득이 편리하게 되면서 소규모지역의 정확한 공간정보 제작이 가능하게 되었다. 이렇게 취득된 영상을 이용한 토지 피복분류는 최신의 공간정보를 저비용으로 제작할 수 있는 장점이 있어 이에 대한 다양한 연구가 수행되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (30)

  1. Castro, J.D.B., Feitosa, R.Q., Rosa, L.C.L., Diaz, P.M.A., and Sanches, I.D.A. (2017), A comparative analysis of deep learning techniques for sub-tropical crop types recognition from multitemporal optical/SAR image sequences, Proceedings of 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images, IEEE, 17-20 october, Niteroi, Brazil, pp. 382-389. 

  2. Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018), Encoder-decoder with atrous separable convolution for semantic image segmentation, In Proceedings of the European conference on computer vision (ECCV), pp. 82-92. 

  3. Dang, L.M., Hassan, S.I., Suhyeon, I., kumar Sangaiah, A., Mehmood, I., Rho, S., Seo, S.H., and Moon, H. (2018), UAV based wilt detection system via convolutional neural networks. Sustainable Computing, pp.1-20. 

  4. Fisher, P.F., Comber, A.J., and Wadsworth, R. (2005), Land Use and Land Cover: Contradiction or Complement, Re-Presenting GIS, Wiley, Chichester, pp. 85-98. 

  5. Gao, Q., Lim, S., & Jia, X. (2018), Hyperspectral image classification using convolutional neural networks and multiple feature learning. Remote Sensing, Vol. 10, No. 2, pp.1-18. 

  6. Hall, O., Dahlin, S., Marstorp, H., Archila Bustos, M.F., Oborn, I., and Jirstrom, M. (2018), Classification of maize in complex smallholder farming systems using UAV imagery, Drones, Vol. 2, No. 3, pp.1-8. 

  7. Huang, G., Liu, S., Van der Maaten, L., and Weinberger, K. Q. (2018), Condensenet: An efficient densenet using learned group convolutions, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2752-2761. 

  8. Ishida, T., Kurihara, J., Viray, F.A., Namuco, S.B., Paringit, E.C., Perez, G.J., and Marciano Jr, J.J. (2018), A novel approach for vegetation classification using UAV-based hyperspectral imaging, Computers and Electronics in Agriculture, Vol.144, pp. 80-85. 

  9. Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., and Bengio, Y. (2017), The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation, In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 11-19. 

  10. Jhonnerie, R., Siregar, V. P., and Nababan, B. (2017), Comparison of random forest algorithm which implemented on object and pixel based classification for mangrove land cover mapping, ICST 2016, Vol.1, pp. 292-302. 

  11. Ji, S., Zhang, C., Xu, A., Shi, Y., and Duan, Y. (2018), 3D convolutional neural networks for crop classification with multi-temporal remote sensing images, Remote Sensing, Vol. 10, No. 1, pp. 1-17. 

  12. Joe, W., Lim, Y., and Park. K.H, (2019), Deep learning based Land Cover Classification Using Convolutional Neural Network: a case study of Korea, Journal of the Korean Geographical Society, Vol. 54, No. 1, pp. 1-16. (in Korean with English abstract) 

  13. Kamilaris, A. and Prenafeta-Boldu, F.X. (2018), Deep learning in agriculture: A survey, Computers and Electronics in Agriculture, Vol. 147, pp. 70-90. 

  14. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014), Large-scale video classification with convolutional neural networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725-1732. 

  15. Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A. (2017), Deep learning classification of land cover and crop types using remote sensing data, IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 5, pp. 778-782. 

  16. Kwak, G.H., Park, S., Yoo, H.Y., and Park, N.W. (2017), Updating land cover maps using object segmentation and past land cover information, Korean Journal of Remote Sensing, Vol. 33, No. 6_2, pp. 1089-1100. (in Korean with English abstract) 

  17. LeCun, Y., Bengio, Y., and Hinton, G. (2015), Deep learning, Nature, Vol. 521, pp. 436-444. 

  18. Long, J., Shelhamer, E., and Darrell, T. (2015), Fully convolutional networks for semantic segmentation, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440. 

  19. Murugan, D., Garg, A., and Singh, D. (2017), Development of an adaptive approach for precision agriculture monitoring with drone and satellite data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 12, pp. 5322-5328. 

  20. Onojeghuo, A.O., Blackburn, G.A., Wang, Q., Atkinson, P.M., Kindred, D., and Miao, Y. (2018), Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data, International Journal of Remote Sensing, Vol. 39, No. 4, pp. 1042-1067. 

  21. Park, J.K. and Park, J.H. (2015), Crops classification using imagery of unmanned aerial vehicle (UAV), Journal of the Korean Society of Agricultural Engineers, Vol. 57, No. 6, pp. 91-97. (in Korean with English abstract) 

  22. Pohlen, T., Hermans, A., Mathias, M., and Leibe, B. (2017), Full-resolution residual networks for semantic segmentation in street scenes, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4151-4160. 

  23. Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A., and Davis, C. H. (2017), Training deep convolutional neural networks for land-cover classification of high-resolution imagery, IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 4, pp. 549-553. 

  24. Skakun, S., Franch, B., Vermote, E., Roger, J.C., Becker-Reshef, I., Justice, C., and Kussul, N. (2017), Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model, Remote Sensing of Environment, Vol. 195, pp. 244-258. 

  25. Song, A. and Kim, Y. (2017), Deep learning-based hyperspectral image classification with application to environmental geographic information systems, Korean Journal of Remote Sensing, Vol. 33, No. 6, pp. 1061-1073. (in Korean with English abstract) 

  26. Sung, S.M. and Lee, J.O. (2016), Accuracy of parcel boundary demarcation in agricultural area using UAV-photogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, pp. 53-62. (in Korean with English abstract) 

  27. Torbick, N., Huang, X., Ziniti, B., Johnson, D., Masek, J., and Reba, M. (2018), Fusion of moderate resolution earth observations for operational crop type mapping, Remote Sensing, Vol. 10, No. 7, pp. 1-16. 

  28. Xu, X., Ji, X., Jiang, J., Yao, X., Tian, Y., Zhu, Y., Cao, W., Cao, Q., Yang, H., Shi, Z., and Cheng, T. (2018), Evaluation of one-class support vector classification for mapping the paddy rice planting area in Jiangsu Province of China from Landsat 8 OLI imagery, Remote Sensing, Vol. 10, No. 4, pp. 1-23. 

  29. Zhong, Y., Fei, F., Liu, Y., Zhao, B. and Jiao, Jial. H. (2017), SatCNN: satellite image dataset classification using agile convolutional neural networks, Remote Sensing Letters, Vol. 8, No. 2, pp. 136-145. 

  30. Zhong, L., Gong, P., and Biging, G.S. (2014), Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery, Remote Sensing of Environment, Vol. 140, pp. 1-13. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로