$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for Increased Menaquinone-7 Synthesis in Bacillus subtilis 원문보기

Journal of microbiology and biotechnology, v.30 no.5, 2020년, pp.762 - 769  

Chen, Taichi (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Xia, Hongzhi (Richen Bioengineering Co., Ltd.) ,  Cui, Shixiu (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Lv, Xueqin (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Li, Xueliang (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Liu, Yanfeng (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Li, Jianghua (Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University) ,  Du, Guocheng (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Liu, Long (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University)

Abstract AI-Helper 아이콘AI-Helper

Vitamin K2 (menaquinone) is an essential vitamin existing in the daily diet, and menaquinone-7 (MK-7) is an important form of it. In a recent work, we engineered the synthesis modules of MK-7 in Bacillus subtilis, and the strain BS20 could produce 360 mg/l MK-7 in shake flasks, while the methyleryth...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • All experiments were independently carried out at least three times, and the results were expressed as mean ± standard deviation (SD).
  • In this study, we focused on enhancing the transcription level of five isp-genes (ispD, ispE, ispF, ispH, and ispG) in the MEP pathway to promote the production of MK-7. The highest MK-7 production of 415 ± 3.
  • In a previous work, the dxs, dxr, idi, and menA genes were overexpressed in BS168 to improve the production of MK-7 [5]. In this study, we overexpressed the isp-genes of MEP pathway in the BS20 strain to increase the production of MK-7. We supposed that overexpression of isp-genes in MEP pathway had a positive effect on the supply of IPP and accumulation of MK-7.
본문요약 정보가 도움이 되었나요?

참고문헌 (24)

  1. 1 Walther B Karl JP Booth SL Boyaval P 2013 Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements Adv. Nutr. 4 463 473 10.3945/an.113.003855 23858094 

  2. 2 Mahdinia E Demirci A Berenjian A 2017 Optimization of Bacillus subtilis natto growth parameters in glycerol-based medium for vitamin K (menaquinone-7) production in biofilm reactors Bioprocess Biosyst. Eng. 41 195 204 10.1007/s00449-017-1857-0 29119323 

  3. 3 Scheiber D Veulemans V Horn P Chatrou ML Potthoff SA Kelm M 2015 High-dose menaquinone-7 supplementation reduces cardiovascular calcification in a murine model of extraosseous calcification Nutrients 7 6991 7011 10.3390/nu7085318 26295257 

  4. 4 El Asmar MS Naoum JJ Arbid EJ 2014 Vitamin k dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: a review Oman. Med. J. 29 172 177 10.5001/omj.2014.44 24936265 

  5. 5 Ma Y McClure DD Somerville MV Proschogo NW Dehghani F Kavanagh JM 2019 Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of menaquinone-7 ACS Synth. Biol. 8 1620 1630 10.1021/acssynbio.9b00077 31250633 

  6. 6 Baj A Wałejko P Kutner A Kaczmarek Ł Morzycki JW Witkowski S 2016 Convergent synthesis of menaquinone-7 (MK-7) Org. Process Res. Dev. 20 1026 1033 10.1021/acs.oprd.6b00037 

  7. 7 Mahanama R Berenjian A Valtchev P Talbot A Biffin R Regtop H 2011 Enhanced production of menaquinone 7 via solid substrate fermentation from Bacillus subtilis Int. J. Food Eng. 7 1 23 10.2202/1556-3758.2314 

  8. 8 Berenjian A Mahanama R Talbot A Biffin R Regtop H Valtchev P 2011 Efficient media for high menaquinone-7 production: response surface methodology approach N Biotechnol. 28 665 672 10.1016/j.nbt.2011.07.007 21839866 

  9. 9 Goodman SR Marrs BL Narconis RJ Olson RE 1976 Isolation and description of a menaquinone mutant from Bacillus licheniformis J. Bacteriol. 125 282 291 10.1128/JB.125.1.282-289.1976 1245457 

  10. 10 Yoshiki T Hisataka T 1989 Extracellular production of menaquinone-4 by a mutant of Flavobacterium sp. 238-7 with a detergentsupplemented culture J. Ferment. Bioeng. 67 102 106 10.1016/0922-338X(89)90188-8 

  11. 11 Berenjian A Mahanama R Talbot A Regtop H Kavanagh J Dehghani F 2014 Designing of an intensification process for biosynthesis and recovery of menaquinone-7 Appl. Biochem. Biotechnol. 172 1347 1357 10.1007/s12010-013-0602-7 24173914 

  12. 12 Mahdinia E Demirci A Berenjian A 2018 Effects of medium components in a glycerol-based medium on vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors Bioprocess Biosyst. Eng. 42 223 232 10.1007/s00449-018-2027-8 30368608 

  13. 13 Cui S Xia H. Chen T Gu Y Lv X Liu Y 2020 Cell membrane and electron transfer engineering for improved synthesis of menaquinone-7 in Bacillus subtilis iScience 23 3 100918 10.1016/j.isci.2020.100918 32109677 

  14. 14 Cui S Lv X Wu Y Li J Du G Ledesma-Amaro R 2019 Engineering a Bifunctional Phr60-Rap60-Spo0A Quorum-Sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis ACS Synth. Biol. 8 1826 1837 10.1021/acssynbio.9b00140 31257862 

  15. 15 Heider SA Wolf N Hofemeier A Peters-Wendisch P Wendisch VF 2014 Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum Front Bioeng. Biotechnol. 2 28 10.3389/fbioe.2014.00028 25191655 

  16. 16 Xue D Abdallah II de Haan IEM Sibbald MJJB Quax WJ 2015 Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes Appl. Microbiol. Biotechnol. 99 5907 5915 10.1007/s00253-015-6531-3 25851715 

  17. 17 Chou HH Keasling JD 2013 Programming adaptive control to evolve increased metabolite production Nat. Commun. 4 2595 10.1038/ncomms3595 24131951 

  18. 18 Abdallah II Pramastya H van Merkerk R Sukrasno Quax WJ 2019 Metabolic engineering of Bacillus subtilis toward taxadiene biosynthesis as the first committed step for taxol production Front Microbiol. 10 218 10.3389/fmicb.2019.00218 30842758 

  19. 19 Ye L Lv X Yu H 2016 Engineering microbes for isoprene production Metab. Eng. 38 125 138 10.1016/j.ymben.2016.07.005 27424210 

  20. 20 Yan X Yu HJ Hong Q Li SP 2008 Cre/lox system and PCR-based genome engineering in Bacillus subtilis Appl. Environ. Microbiol. 74 5556 5562 10.1128/AEM.01156-08 18641148 

  21. 21 Cabrera-Valladares N Martinez LM Flores N Hernandez-Chavez G Martinez A Bolivar F 2012 Physiologic consequences of glucose transport and phosphoenolpyruvate node modifications in Bacillus subtilis 168 J. Mol. Microbiol. Biotechnol. 22 177 197 10.1159/000339973 22846916 

  22. 22 Li M Hou F Wu T Jiang X Li F Liu H 2019 Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories Nat. Prod. Rep. 37 80 99 10.1039/C9NP00016J 31073570 

  23. 23 Bitok JK Meyers CF 2012 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity ACS Chem. Biol. 7 1702 1710 10.1021/cb300243w 22839733 

  24. 24 Li Q Fan F Gao X Yang C Bi C Tang J 2017 Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli Metab. Eng. 44 13 21 10.1016/j.ymben.2017.08.005 28864262 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로