$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유류오염토양 근권정화기술 동향 및 온실가스 배출 특성
Rhizoremdiation of Petroleum Hydrocarbon-contaminated Soils and Greenhouse Gas Emission Characteristics: A Review 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.48 no.2, 2020년, pp.99 - 112  

서윤주 (이화여자대학교 환경공학과) ,  조경숙 (이화여자대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

유류 오염 토양을 환경친화적으로 정화하는 방법으로 식물과 근권미생물 사이의 생태적 상승작용(synergism)에 기반을 둔 rhizoremediation이 큰 주목을 받고 있다. 전지구적 문제인 기후변화에 대응하기 위해서는 오염 토양을 정화하는 과정에서 온실가스 배출량을 최소화할 수 있는 기후변화 대응 정화기술이 도입될 필요가 있다. 기후변화 대응 rhizoremediation 기술에서, 오염정화효율과 non-CO2 온실 가스 배출량에 영향을 미치는 주요인자는 오염물질 특성 및 토양의 물리화학적 특성 뿐 아니라, 식물-미생물 상호작용, 미생물 활성, 그리고 첨가제 및 강화제 첨가 여부로 구분할 수 있다. 본 총설에서는 유류 오염토양을 정화하기 위한 rhizoremediation 기술 개발 동향을 정리하고, 기후변화 대응 rhizoremediation 기술 개발 방향에 대해 고찰하였다.

Abstract AI-Helper 아이콘AI-Helper

Rhizoremediation, based on the ecological synergism between plant and rhizosphere microorganisms, is an environmentally friendly method for the remediation of petroleum hydrocarbon-contaminated soils. In order to mitigate global climate change, it is necessary to minimize greenhouse gas emissions wh...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 기후변화 대응 rhizoremediation 기술에서, 오염정화효율과 non-CO2 온실 가스 배출량에 영향을 미치는 주요인자는 오염물질 특성 및 토양의 물리화학적 특성 뿐 아니라, 식물-미생물 상호작용, 미생물 활성, 그리고 첨가제 및 강화제 첨가 여부로 구분할 수 있다. 본 총설에서는 유류 오염토양을 정화하기 위한 rhizoremediation 기술 개발 동향을 정리하고, 기후변화 대응 rhizoremediation 기술 개발 방향에 대해 고찰하였다.
  • 그런데 전지구적 문제인 기후변화에 대응하기 위해서는 오염 토양을 정화하는 과정에서 온실가스 배출량을 최소화할수 있는 기후변화 대응 정화기술이 도입될 필요가 있다. 이에 본 총설에서는 유류 오염토양을 정화하기 위한 rhizoremediation 기술 개발 동향을 정리하고, 기후변화 대응 rhizoremediation 기술 개발 방향에 대해 고찰하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
유류에 의해 토양이 오염되면 어떠한 일이 발생하는가? 유류에 의해 토양이 오염되면, 토양은 극도의 소수성 환경으로 전환되어 식물과 토양 미생물들이 이용 가능한 유효수분(available water)과 질소 및 인 등과 같은 영양분이 감소하게 된다. 또한, 오염된 유류 및 전환(혹은 분해) 산물이 토양 생태계에 독성물질로 작용하게 된다.
유류 오염 토양의 생물학적 정화방법은 어떤 것이 있는가? 유류 오염 토양의 생물학적 정화방법의 종류와 각 방법의 정화원리 및 특성을 Table 1에 정리하였다. 인위적으로 오염된 환경에 전혀 관여하지 않는 natural attenuation 기술은 자연적인 정화작용에 의존하여 토양 및 지하수의 유류오염을 처리한다[13]. 미생물의 유류 분해 효율에 영향을 미치는 공기(산소) 주입, 영양제 및 계면활성제 등의 첨가 등과 같은 환경인자를 조절함으로써 토양 환경 내에 존재하는 토착 미생물의 활성을 증대시키는 방식으로는 biostimulation, bioventing 및 biosparging 등의 기술이 있다[14−16]. Bioaugmentation 방법은 유류 분해 미생물 컨소시움 등과 같은 미생물제제를 적극적으로 오염 토양에 첨가하여 토양의 생물상을 조절함으로써 정화 효율을 향상시키는 방법이다[17].
인간과 생태계를 위협하는 대표적인 환경오염물은 무엇인가? 가솔린, 디젤, 윤활유 등과 같은 석유계 탄화수소(petroleum hydrocarbon, PH)는 인간과 생태계를 위협하는 대표적인 환경오염물로, 토양, 지하수 및 해양으로 유입되는 경우 생태적 기능을 심각하게 저하시킨다[1−3]. 이러한 유류에 의한 환경오염이 발생하는 주요 경로는, 석유 및 LNG(액화 천연가스) 등의 액체를 저장하는 지하탱크의 누출, 유조선의 해난사고 등으로 인한 기름 유출, 수송 과정 및 산업 공정에서의 배출을 들 수 있다[3, 4].
질의응답 정보가 도움이 되었나요?

참고문헌 (95)

  1. Hussain I, Puschenreiter M, Gerhard S, Schoftner P, Yousaf S, Wang A, et al. 2018. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environ. Exp. Bot. 147: 202-219. 

  2. Varjani SJ. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223: 277-286. 

  3. Ron EZ, Rosenberg E. 2014. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol. 27: 191-194. 

  4. Aisien FA, Chiadikobi JC, Aisien ET. 2009. Toxicity assessment of some crude oil contaminated soils in the Niger delta. Adv. Mater. Res. 62-64: 451-455. 

  5. Hentati O, Lachhab R, Ayadi M, Ksibi M. 2013. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ. Monit. Assess. 185: 2989-2998. 

  6. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. 2015. Ecological implications of motor oil pollution: earthworm survival and soil health. Soil Biol. Biochem. 85: 72-81. 

  7. Fatima K, Imran A, Naveed M, Afzal M. 2017. Plant-bacteria synergism: An innovative approach for the remediation of crude oil-contaminated soils. Soil Environ. 36: 93-113. 

  8. Salanitro JP. 2001. Bioremediation of petroleum hydrocarbons in soil. Adv. Agron. 72: 53-105. 

  9. Huang H, Tang J, Niu Z, Giesy JP. 2019. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. Chemosphere 229: 418-425. 

  10. Pant R, Pandey P, Kotoky R. 2016. Rhizosphere mediated biodegradation of 1,4-dichlorobenzene by plant growth promoting rhizobacteria of Jatropha curcas. Ecol. Eng. 94: 50-56. 

  11. Logeshwaran P, Megharaj M, Chadalavada S, Bowman M, Naidu R. 2018. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ. Technol. Innov. 10: 175-193. 

  12. Liu PWG, Chang TC, Whang LM, Kao CH, Pan PT, Cheng SS. 2011. Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift. Int. Biodeterior. Biodegr. 65: 1119-1127. 

  13. Cai B, Ma J, Yan G, Dai X, Li M, Guo S. 2016. Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude. Biochem. Eng. J. 112: 170-177. 

  14. Nwinyi OC, Olawore YA. 2017. Biostimulation of spent engine oil contaminated soil using Ananas comosus and Solanum tuberosum peels. Environ. Technol. Innov. 8: 373-388. 

  15. Osterreicher-Cunha P, Vargas EA, Guimaraes JRD, Campos TMP, Nunes CMF, Costa A, et al. 2004. Evaluation of bioventing on a gasoline-ethanol contaminated undisturbed residual soil. J. Hazard. Mater. 110: 63-76. 

  16. Kao CM, Chen CY, Chen SC, Chien HY, Chen YL. 2008. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere 70: 1492-1499. 

  17. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. 2018. Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci. Total Environ. 636: 968-974. 

  18. Wang B, Xie HL, Ren HY, Li X, Chen L, Wu BC. 2019. Application of AHP, TOPSIS, and TFNs to plant selection for phytoremediation of petroleum-contaminated soils in shale gas and oil fields. J. Clean. Prod. 233: 13-22. 

  19. Agamuthu P, Abioye OP, Aziz AA. 2010. Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J. Hazard. Mater. 179: 891-894. 

  20. Limmer M, Burken J. 2016. Phytovolatilization of organic contaminants. Environ. Sci. Technol. 50: 6632-6643. 

  21. Barrutia O, Garbisu C, Epelde L, Sampedro MC, Goicolea MA, Becerril JM. 2011. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Sci. Total Environ. 409: 4087-4093. 

  22. IPCC, 2013. In: Stocker, TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels, A, Xia Y, Bex V, Midgley PM. (Eds.), Climate change 2013: The physical science basis. Contribution of working Ggoup I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK & New York, NY, USA. 

  23. Wright EL, Black CR, Turner B, Sjogersten S, 2013. Environmental controls of temporal and spatial variability in $CO_2$ and $CH_4$ fluxes in a neotropical peatland. Glob. Change Biol. 19: 3775-3789. 

  24. Hoyos-Santillan J, Lomax BH, Large D, Turner BL, Boom A, Lopez OR, et al. 2016. Quality not quantity: organic matter composition controls of $CO_2$ and $CH_4$ fluxes in neotropical peat profiles. Soil Biol. Biochem. 103: 86-96. 

  25. Yan F, Schubert S, Mengel K, 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 28: 617-624. 

  26. Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, et al. 2019. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biol. Biochem. 129: 191-200. 

  27. Wang W, Neogi S, Lai DYF, Zeng C, Wang C, Zeng D. 2017. Effects of industrial and agricultural waste amendment on soil greenhouse gas production in a paddy field in Southeastern China. Atmos. Environ. 164: 239-249. 

  28. Martin BC, George SJ, Price CA, Ryan MH, Tibbett M. 2014. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci. Total Environ. 472: 642-653. 

  29. Kaimi E, Mukaidani T, Miyoshi S, Tamaki M. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ. Pollut. 55: 110-119. 

  30. Nanekar S, Dhote M, Kashyap S, Singh SK, Juwarkar AA. 2015. Microbe assisted phytoremediation of oil sludge and role of amendments: a mesocosm study. Int. J. Environ. Sci. Technol. 12: 193-202. 

  31. Basumatary B, Bordoloi S, Sarma HP. 2012. Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut. 223: 3373-3383. 

  32. Hussain F, Hussain I, Khan AHA, Muhammad YS, Iqbal M, Soja G, et al. 2018. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 153: 80-88. 

  33. Arslan M, Afzal M, Amin I, Iqbal S, Khan QM. 2014. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PLoS One 9: e111208. 

  34. Cartmill AD, Cartmill DL, Alarcon A. 2014. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil. Int. J. Phytoremediat. 16: 285-301. 

  35. Plociniczak T, Fic E, Pacwa-Plociniczak M, Pawlik M, Piotrowska-Seget Z. 2017. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. Int. J. Phytoremediat. 19: 614-620. 

  36. Afegbua SL, Batty LC. 2019. Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils. Int. J. Phytoremediat. 21: 200-208. 

  37. Moubasher HA, Hegazy AK, Mohamed NH, Moustafa YM, Kabiel HF, Hamad AA. 2015. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int. Biodeterior. Biodegr. 98: 113-120. 

  38. Emmanuel O, Enobong E, Gideon, A. 2018. Laboratory-scale bioremediation of crude oil polluted soil using a consortia of rhizobacteria obtained from plants in Gokana-Ogoni, Rivers state. J. Advan. Microbiol. 9: 2456-7116. 

  39. Hernandez-Ortega HA, Alarcon A, Ferrera-Cerrato R, Zavaleta-Mancera HA, Lopez-Delgado HA, Mendoza-Lopez MR. 2012. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J. Environ. Econom. Manage. 95: S319-S324. 

  40. Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE. 2015. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138: 592-598. 

  41. Hall J, Soole K, Bentham R. 2011. Hydrocarbon phytoremediation in the family Fabacea -a review. Int. J. Phytoremediat. 13: 317-332. 

  42. Fu D, Teng Y, Luo Y, Tu C, Li S, Li Z, et al. 2012. Effects of alfalfa and organic fertilizer on benzo[a]pyrene dissipation in an aged contaminated soil. Environ. Sci. Pollut. Res. 19: 1605-1611. 

  43. Riskuwa-Shehu ML, Ijah UJJ, Manga SB, Bilbis LS. 2017. Evaluation of the use of legumes for biodegradation of petroleum hydrocarbons in soil. Int. J. Environ. Sci. Technol. 14: 2205-2214. 

  44. Shahzad A, Saddiqui S, Bano A. 2016. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int. J. Phytoremediat. 18: 521-526. 

  45. Barati M, Bakhtiari F, Mowla D, Safarzadeh S. 2017. Total petroleum hydrocarbon degradation in contaminated soil as affected by plants growth and biochar. Environ. Earth Sci. 76: 688. 

  46. Ingrid L, Lounes-Hadj Sahraoui A, Frederic L, Yolande D, Joel F. 2016. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: microcosm experiment on aged-contaminated soil. Environ. Pollut. 213: 549-560. 

  47. Lacalle RG, Gomez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM. 2018. Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Sci. Total Environ. 618: 347-356. 

  48. Kai T, Ikeura H, Ozawa S, Tamaki M. 2018. Effects of basal fertilizer and perlite amendment on growth of zinnia and its remediation capacity in oil-contaminated soils. Int. J. Phytoremediation 20: 1236-1242. 

  49. Liu R, Jadeja RN, Zhou Q, Liu Z. 2012. Treatment and remediation of petroleum-Contaminated soils using selective ornamental plants. Environ. Eng. Sci. 29: 494-501. 

  50. Cook RL, Hesterberg D. 2013. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int. J. Phytoremediat. 15: 844-860. 

  51. Brink SC. 2016. Unlocking the secrets of the rhizosphere. Trends Plant Sci. 21: 169-170. 

  52. Mhatrea PH, Karthikb C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, et al. 2019. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatal. Agric. Biotechnol. 17: 119-128. 

  53. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. 2015. Plant growth promoting rhizobia: challenges and opportunities. 3Biotech 5: 355-377. 

  54. Cakmakci R, Donmez F, Aydm A, Sahin F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38: 1482-1487. 

  55. Siddiqui ZA, Mahmood I. 2001. Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour. Technol. 79: 41-45. 

  56. Zaidi A, Khan MS, Ahemad M, Oves M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 56: 263-284. 

  57. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2: 587. 

  58. Hall JA, Peirson D, Ghosh S, Glick BR. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci. 44: 37-42. 

  59. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils 42: 267-272. 

  60. Sujatha N, Ammani K. 2013. Siderophore production by the isolates of fluorescent pseudomonads. Int. J. Curr. Res. Rev. 5: 1-7. 

  61. Guan LL, Kanoh K, Kamino K. 2001. Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron limited conditions. Appl. Environ. Microbiol. 67: 1710-1717. 

  62. Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Control 29: 66-72. 

  63. Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW. 2003. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot. 22: 579-588. 

  64. Gopalakrishnan S, Srinivas V, Samineni S. 2017. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 11: 116-123. 

  65. Insunza V, Alstrom S, Eriksson KB. 2002. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant Soil 241: 271-278. 

  66. Tara N, Afzal M, Ansari TM, Tahseen R, Iqbal S, Khan QM. 2014. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Int. J. Phytoremediation 16: 1268-1277. 

  67. Zhang X, Chen L, Liu X, Wang C, Chen X, Xu G, et al. 2014. Synergic degradation of diesel by Scirpus triqueter and its endophytic bacteria. Environ. Sci. Pollut. Res. 21: 8198-8205. 

  68. Wu T, Xu J, Xie W, Yao Z, Yang H, Sun C, et al. 2018. Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front. Microbiol. 9: 1087. 

  69. Gao Y, Guo S, Wang J, Li D, Wang H, Zeng D. 2014. Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere 117: 486-493. 

  70. Ebadi A, Sima NAK, Olamaee M, Hashemi M, Nasrabadi RG. 2018. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria. J. Environ. Manage. 219: 260-268. 

  71. He J, Fana X, Liu H, He X, Wang Q, Liu Y, et al. 2019. The study on Suaeda heteroptera Kitag, Nereis succinea and bacteria's joint bioremediation of oil-contaminated soil. Microchem. J. 147: 872-878. 

  72. Yu XZ, Wu SC, Wu FY, Wong MH. 2011. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J. Hazard. Mater. 186: 1206-1217. 

  73. Bisht S, Pandey P, Kaur G, Aggarwal H, Sood A, Sharma S, et al 2014. Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur. J. Soil Biol. 60: 67-76. 

  74. Singha LP, Sinha N, Pandey P. 2018. Rhizoremediation prospects of polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Ecotox. Environ. Safe. 164: 579-588. 

  75. Gao Y, Zong J, Que H, Zhou Z, Xiao M, Chen S. 2017. Inoculation with arbuscular mycorrhizal fungi increases glomalin-related soil protein content and PAH removal in soils planted with Medicago sativa L. Soil Biol. Biochem. 115: 148-151. 

  76. Liu W, Hou J, Wang Q, Ding L, Luo Y. 2014. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 117: 303-308. 

  77. Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D. 2016. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total Environ. 563-564: 693-703. 

  78. Godheja J, Shekhar SK, Modi DR. 2017. Bacterial Rhizoremediation of Petroleum Hydrocarbons (PHC). In Plant-microbe interactions in agro-ecological perspectives. pp. 495-519. Springer, Singapore. 

  79. Wiszniewska A, Hanus-Fajerska E, Muszynska E, Ciarkowska K. 2016. Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26: 1-12. 

  80. Ameloot N, Graber ER, Verheijen FG, De Neve S. 2013. Interactions between biochar stability and soil organisms: review and research needs. Eur. J. Soil Sci. 64: 379-390. 

  81. Bertola M, Mattarozzi M, Sanangelantoni AM, Careri M, Visioli G. 2019. PGPB colonizing three-year biochar-amended soil: Towards biochar-mediated biofertilization. J. Soil Sci. Plant Nut. 19: 841-850. 

  82. Leahy JG, Colwell RR. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Mol. Biol. Rev. 54: 305-315. 

  83. Tremblay J, Yergeau E, Fortin N, Cobanli S, Elias M, King TL, et al. 2017. Chemical dispersants enhance the activity of oil-and gas condensate-degrading marine bacteria. ISME J. 11: 2793. 

  84. Pangala SR, Moore S, Hornibrook ERC, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytologist 197: 524-531. 

  85. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM. 2008. Root exudates regulate soil fungal community composition and diversity. Appl. Environ. Microbiol. 74: 738-744. 

  86. Silva IR, Novais RF, Jham GN, Barros NF, Gebrim FO, Nunes FN, et al. 2004. Responses of eucalypt species to aluminum: the possible involvement of low molecular weight organic acids in the Al tolerance mechanism. Tree Physiol. 24: 1267-1277. 

  87. Strom L, Owen AG, Godbold DL, Jones DL. 2002. Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol. Biochem. 34: 703-710. 

  88. Coskun D, Britto DT, Shi W, Kronzucker HJ. 2017. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 22: 661-673. 

  89. Kerdchoechuen O. 2005. Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield. Agr. Ecosyst. Environ. 108: 155-163. 

  90. Girkina NT, Turnerb BL, Ostlec N, Craigona J, Sjogerstena S. 2018b. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil Biol. Biochem. 127: 280-285. 

  91. Girkina NT, Turnerb BL, Ostlec N, Craigona J, Sjogerstena S. 2018a. Root exudate analogues accelerate $CO_2$ and $CH_4$ production in tropical peat. Soil Biol. Biochem. 117: 48-55. 

  92. Florio A, Brefort C, Gervaix J, Berard A, Le Roux X. 2019. The responses of $NO_2{^-}$ and $N_2O$ -reducing bacteria to maize inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil gross and net $N_2O$ production. Soil Biol. Biochem. 136: 107524. 

  93. Kim J, Yoo G, Kim D, Ding W, Kang H. 2017. Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl. Soil Ecol. 117-118: 57-62. 

  94. Duan P, Zhang Q, Zhang X, Xiong Z. 2019. Mechanisms of mitigating nitrous oxide emissions from vegetable soil varied with manure, biochar and nitrification inhibitors. Agric. Forest Meteorol. 278: 107672. 

  95. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220-230. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로