$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰
Artificial Intelligence Based Medical Imaging: An Overview 원문보기

방사선기술과학 = Journal of radiological science and technology, v.43 no.3, 2020년, pp.195 - 208  

홍준용 (동서대학교 융합방사선학과) ,  박상현 (동서대학교 융합방사선학과) ,  정영진 (동서대학교 방사선학과)

Abstract AI-Helper 아이콘AI-Helper

Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that sur...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
의료 영상 화질개선에 딥 러닝이 쓰인 대표적인 기법은 무엇이 있는가? 최근에는 의료영상을 분할하거나 판독하는 것 이외에 딥 러닝을 이용한 화질 개선 기법도 주목을 받고 있는데, 일례로 저선량 CT 영상의 화질을 딥 러닝으로 개선하는 기법 [50, 51], 관류자기공명영상의 화질을 딥 러닝으로 개선하는 기법[52], 저선량 PET의 영상 화질을 개선하는 기법 등이 있다[53]. 특히, CT, PET 등 방사선 피폭을 수반하는 영상화 기기에서 저선량 영상의 화질을 개선함으로써, 영상의 진단적 정보는 유지하면서도 환자의 피폭선량을 줄여 환자 케어의 수준을 높일 수 있을 것으로 기대된다.
비지도 학습의 단점은 무엇인가? 다시 말해, 종양 영역에 의한 이상값은 정상 소견의 영상에서 나타나지 않으므로, 이 차이를 이용해서 각 영상을 서로 다른 군집으로 분류할 수 있다. 하지만, 노이즈 신호에 의한 이상값에도 민감하게 반응한다는 단점이 있다.
AI 의료영상 분석은 무엇인가? AI 의료영상 분석이란 사전 학습된 AI가 의료영상으로부터 특징(feature)을 추출하여 병변을 진단하는 기술이다[3]. 의료영상에서 특징이란 명도(brightness), 대조도(contrast), 공간주파수(spartial-frequency), 균질성(homogeneity), 곡률(curvature), 길이(length) 등 영상의 데이터를 통해 정량적으로 나타낼 수 있는 것을 의미하는데, 각 병변은 서로를 구분 짓게 하는 고유의 특징을 가진다[4].
질의응답 정보가 도움이 되었나요?

참고문헌 (59)

  1. Harman M. The role of artificial intelligence in software engineering. In: 2012 First International Workshop on Realizing AI Synergies in Software Engineering (RAISE). IEEE. 2012 Jun:1-6. 

  2. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018 Oct;2(1):35. 

  3. Trinder JC, Wang Y, Sowmya A, Palhang M. Artificial intelligence in 3-D feature extraction. In Automatic Extraction of Man-Made Objects from Aerial and Space Images. 2nd ed. Basel: Birkhauser; 1997. 

  4. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017 Jun;19:221-48. 

  5. RavR D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. Deep learning for health informatics. IEEE J Biomed Health Inform. 2017 Jan;21(1):4-21. 

  6. LeCun Y, Boser B, Denker JS, Henderson D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541-51. 

  7. Neyshabur B, Tomioka R, Srebro N. In search of the real inductive bias: On the role of implicit regularization in deep learning. arXiv preprint arXiv: 1412.6614; 2014. 

  8. Yu K, Xu W, Gong Y. Deep learning with kernel regularization for visual recognition. Adv Neural Inf Process Syst. 2009:1889-96. 

  9. Kukacka J, Golkov V, Cremers D. Regularization for deep learning: A taxonomy. arXiv preprint arXiv:1710.10686; 2017. 

  10. Yoshida Y, Miyato T. Spectral norm regularization for improving the generalizability of deep learning. arXiv preprint arXiv:1705.10941; 2017. 

  11. Russell S, Norvig P. Artificial intelligence a modern approach. 3rd ed. New Jersey: Prentice Hall; 2009. 

  12. Mitchell TM. Machine learning. New York: McGraw-Hill; 1997. 

  13. Vial A, Stirling D, Field M, Ros M, Ritz CH, Carolan, MG, et al. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: A review. Translational Cancer Res. 2018;7(3):803-16. 

  14. Ang JC, Mirzal A, Haron H, Hamed HNA. Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection. IEEE/ACM Trans Comput Biol Bioinform. 2015;13(5):971-89. 

  15. Lin YZ, Nie ZH, Ma HW. Structural damage detection with automatic feature-extraction through deep learning. Computer-Aided Civ Inf Eng. 2017;32(12):1025-46. 

  16. Yang J, Zhao YQ, Chan JCW. Learning and transferring deep joint spectral-spatial features for hyperspectral classification. IEEE Trans Geosci Remote Sens. 2017;55(8):4729-42. 

  17. Weiss KR, Khoshgoftaar TM. Comparing transfer learning and traditional learning under domain class imbalance. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). 2017 Dec:337-43. 

  18. Yoo Y, Brosch T, Traboulsee A, Li DK, Tam R. Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation. In International Workshop on Machine Learning in Medical Imaging. 2014 Sep:117-24. 

  19. Cai Y, Landis M, Laidley DT, Kornecki A, Lum A, Li S. Multi-modal vertebrae recognition using transformed deep convolution network. Comput Med Imaging Graph. 2016 Jul;51:11-9. 

  20. Jaumard-Hakoun A, Xu K, Roussel-Ragot P, Dreyfus G, Denby, B. Tongue contour extraction from ultrasound images based on deep neural network. arXiv preprint arXiv:1605.05912; 2016. 

  21. Saito K. Deep learning starting from the bottom. Seoul: Hanbit Media; 2017. 

  22. Kim H, Nam H, Jung W, Lee J. Performance analysis of CNN frameworks for GPUs. In 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). 2017 Apr:55-64. 

  23. Agarap AF. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375; 2018. 

  24. Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB. Deep learning in medical imaging: General overview. Korean J Radiol. 2017 Aug;18(4):570-84. 

  25. Wakui Y, Wakui S. Math to understand deep learning. Seoul: Hanbit Media; 2018. 

  26. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine. 2018;15(11):e1002686. 

  27. Shadmi R, Mazo V, Bregman-Amitai O, Elnekave E. Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. In 2018 IEEE 15th International Symposium on Biomedical Imaging. 2018 Apr:24-8. 

  28. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging. 2014;34(10):1993-2024. 

  29. Urban G, Bendszus M, Hamprecht F, Kleesiek J. Multi-modal brain tumor segmentation using deep convolutional neural networks. MICCAI BraTS (brain tumor segmentation) challenge. Proceedings, Winning Contribution. 2014:31-5. 

  30. Zikic D, Ioannou Y, Brown M, Criminisi A. Segmentation of brain tumor tissues with convolutional neural networks. Proceedings MICCAI-BRATS. 2014:36-9. 

  31. Oman O, Makela T, Salli E, Savolainen S, Kangasniemi M. 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur Radiol Exp. 2019;3(1):8. 

  32. Yang W, Hong JY, Kim JY, Paik SH, Lee SH, Park JS, et al. A novel singular value decomposition-based denoising method in 4-dimensional computed tomography of the brain in stroke patients with statistical evaluation. Sensors. 2020;20:3063. 

  33. Park HY, Pyeon D, Kim DH, Jung Y. Dynamic computed tomography based on spatio-temporal analysis in acute stroke: Preliminary study. J Radiol Sci Technol. 2016;39:543-7. 

  34. Kim D, Jung Y. Simulation study for feature identification of dynamic medical image reconstruction technique based on singular value decomposition. J Radiol Sci Technol. 2019;42:119-30. 

  35. Liu M, Zhang J, Adeli E, Shen D. Landmark-based deep multi-instance learning for brain disease diagnosis. Med Image Anal. 2018;43:157-68. 

  36. Choi H, Jin KH. Alzheimer's Disease Neuroimaging Initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103-9. 

  37. Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging. 2016;3(3):034501. 

  38. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. 

  39. Christe A, Peters AA, Drakopoulos D, Heverhagen JT, Geiser T, Stathopoulou T, et al. Computer-aided diagnosis of pulmonary fibrosis using deep learning and CT images. Invest Radiol. 2019;54(10):627. 

  40. Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R. Deep learning in mammography and breast histology, an overview and future trends. Med Image Anal. 2018;47:45-67. 

  41. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep. 2016;6(1):1-13. 

  42. Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther. 2015;8. 

  43. Dross PE, Sumner R, Tysowsky M, Aujero MP. International radiology for developing countries: The delivery of medical imaging services to a Honduran radiologic scarce zone. J Am Coll Radiol. 2014;11(12):1173-7. 

  44. Kwon DI. Only about 10 people in the emergency room nationwide who specialize in imaging medicine to read CT.MRI. Hankook Ilbo, 2017.11.20. 

  45. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chest X-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2097-106. 

  46. Jack Jr CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008;27(4):685-91. 

  47. Malone IB, Cash D, Ridgway GR, MacManus DG, Ourselin S, Fox NC, et al. MIRIAD-Public release of a multiple time point Alzheimer's MR imaging dataset. NeuroImage. 2013;70:33-6. 

  48. Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. Inbreast: Toward a full-field digital mammographic database. Acad Radiol. 2012;19(2):236-48. 

  49. Razzak MI, Naz S, Zaib A. Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApps. 2018:323-50. 

  50. Ding Q, Chen G, Zhang X, Huang Q, Ji H, Gao H. Low-dose CT with deep learning regularization via proximal forward backward splitting. Phys Med. 2020. 

  51. Shin YJ, Chang W, Ye JC, Kang E, Oh DY, Lee YJ. Low-dose abdominal CT using a deep learning-based denoising algorithm: A comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol. 2020;21(3):356-64. 

  52. Xie D, Li Y, Yang H, Bai L, Wang T, Zhou F. Denoising arterial spin labeling perfusion MRI with deep machine learning. Magn Reson Imaging. 2020. 

  53. Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M. Ultra-low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology. 2019; 290(3):649-56. 

  54. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S. Generative adversarial nets. Adv Neural Inf Processing Systems. 2014:2672-80. 

  55. Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, Isgum I. Deep MR to CT synthesis using unpaired data. In International Workshop on Simulation and Synthesis in Medical Imaging. 2017 Sep:14-23. 

  56. Yi X, Babyn P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging. 2018;31(5):655-69. 

  57. SRnchez I, Vilaplana V. Brain MRI super-resolution using 3D generative adversarial networks. arXiv preprint arXiv:1812.11440; 2018. 

  58. Ran M, Hu J, Chen Y, Chen H, Sun H, Zhou J. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network. Medl Image Anal. 2019; 55:165-80. 

  59. Nie D, Trullo R, Lian J, Petitjean C, Ruan S, Wang Q. Medical image synthesis with context-aware generative adversarial networks. In International Conference on Medical Image Computing and Computer-assisted Intervention. 2017 Sep:417-25. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로