$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 재생에너지(태양광, 풍력) 기술의 온실가스 감축산정: 국내를 대상으로
The Estimation of Greenhouse Gas Reductions from Renewable Energy (Photovoltaic, Wind Power) : A Case Study in Korea 원문보기

Journal of environmental science international = 한국환경과학회지, v.29 no.7, 2020년, pp.729 - 737  

정재형 (창원시정연구원 도시공간연구실) ,  김기만 (녹색기술센터 정책연구부)

Abstract AI-Helper 아이콘AI-Helper

This study estimates the greenhouse gas (GHG) emissions reduction resulting from photovoltaic and wind power technologies using a bottom-up approach for an indirect emission source (scope 2) in South Korea. To estimate GHG reductions from photovoltaic and wind power activities under standard operati...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 2015년 국내 태양광과 풍력발전의 운영자료를 이용한 상향식접근법의 온실가스 감축산정을 분석 한 결과, 다음과 같은 결론을 도출하였다. 태양광과 풍력 발전 기술의 운영자료는 누적보급량 대비 약 33.
  • 본 연구는 국내 태양광과 풍력발전 사업자를 대상으로 현장 운영자료를 바탕으로 기술별 온실가스 감축량을 산정하고, 이를 기반으로 기술별 온실가스 감축원단위를 도출하였다. 이를 비교하기 위하여, 본 연구에서는 국내 외에서 수행한 우리나라 전체 CDM 사업계획서 91건을 바탕으로 온실가스 감축량과 기술용량을 이용하여 기술 별 온실가스 감축원단위를 분석하여, 최종적으로 본 연구와 비교·분석하였다(UNFCCC, 2016).
  • 본 연구는 신재생에너지 기술 중 2015년 우리나라 전력거래소에 등록된 태양광 및 풍력발전 사업자를 대상으로 기술수준의 운영자료 기반의 상향식접근법을 이용하여 기술별 온실가스 감축량을 분석하고자 한다. 이는 온 실가스 감축사업 수준에서 국내 태양광, 풍력에 대한 온실가스 감축량을 확인함으로써 R&D 추진전략, 전력 부분의 온실가스 감축을 위한 태양광, 풍력 활용 방안에 대한 시사점을 제공할 수 있다.
  • 본 연구에서는 산업공정에서 배출되는 온실가스 물질을 제외한 이산화탄소(CO2), 메탄(CH4), 아산화질소(N2O)를 연구 대상물질로 선정하였으며, 온실가스 물질을 정량화하기 위하여 지구온난화지수(Global Warming Potential, GWP)를 적용하여 이산화탄소 환산톤 (CO2equivalent)으로 정량화하여 표현하였다. 특히, 본 연구는 IPCC 5차 평가보고서에서 제시하고 있는 지구온난화 지수 즉, 이산화탄소(CO2) 1을 기준으로, 메탄(CH4) 28, 아산화질소(N2O) 265를 적용하여 온실가스 감축량을 정량화하였다(IPCC, 2014).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
상향식접근법은 무엇인가? , 2014). 반면, 상향식접근법(bottom-up approach)은 온실가스 감축사업 수준에서 온실가스 배출영향을 분석하는 것으로(Kim et al., 2014), 태양광과 풍력발전의 개별적 온실가스 감축분석이 가능하다.
온실가스 배출 감축을 위한 방안으로 신재생에너지의 역할이 중요한 이유는 무엇인가? , 2016; Hussain et al., 2017), 이는 화석연료를 대체 함으로써 온실가스를 감축하고(Li et al., 2017) 친환경적 에너지로서 역할을 수행할 것으로 기대를 받고 있다 (Rule et al., 2009).
상향식접근법으로 기술별 온실가스 감축량을 분석하는 이유는 무엇인가? 본 연구는 신재생에너지 기술 중 2015년 우리나라 전력거래소에 등록된 태양광 및 풍력발전 사업자를 대상으로 기술수준의 운영자료 기반의 상향식접근법을 이용하여 기술별 온실가스 감축량을 분석하고자 한다. 이는 온 실가스 감축사업 수준에서 국내 태양광, 풍력에 대한 온실가스 감축량을 확인함으로써 R&D 추진전략, 전력 부분의 온실가스 감축을 위한 태양광, 풍력 활용 방안에 대한 시사점을 제공할 수 있다. 또한, 상향식접근법에 기반하여 도출한 온실가스 감축량의 의미를 확인하기 위해 태양광과 풍력발전 기술의 온실가스 감축수준을 청정개발체제(Clean Development Mechanism, CDM) 사업과 비교·분석한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (41)

  1. Adam, A. D., Apaydin, G., 2016, Grid connected solar system as a tool for green house gas emission reduction in Turkey, Renew. Sustain. Energy Rev., 53, 1086-1091. 

  2. Blindheim, B., 2015, A Missing link? the case of Norway and Sweden: dose increased renewable energy production impact domestic greenhouse gas emissions?, Energy Policy, 77, 207-215. 

  3. Breyer, C., Koskinen, O., Blechinger, P., 2015, Profitable climate change mitigation: the case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems, Renew. Sustain. Energy Rev., 49, 610-628. 

  4. de_Richter, R. K., Ming, T., Caillol, S., Liu, W., 2016, Fighting global warming by GHG removal: destroying CFCs and HFCs in solar-wind power plant hybrid producing renewable energy with no-intermittency, International Journal of Greenhouse Gas Control, 49, 446-472. 

  5. Dountio, E. G., Meukam, P., Tchaptchet, D. L. P., 2016, Electricity generation technology options under the greenhouse gases mitigation scenario: case study of Cameroon, Energy Strategy Reviews, 13-14, 191-211. 

  6. EEA (European Environment Agency), 2015, Renewable energy in Europe: approximated recent growth and knock-in effects. 

  7. GIR (Greenhouse Gas Inventory and Research Center of Korea), 2017, http://www.gir.go.kr. 

  8. Griggs, D., 2013, Sustainable development goals for people and planet, Nature, 495. 

  9. Hussain, A., Arif, S. M., Aslam, M., 2017, Emerging renewable and sustainable energy technologies: state of the art, Renew. Sustain. Energy Rev., 71, 12-28. 

  10. IEA (International Energy Agency), 2016, 2016 $CO_2$ emissions from fuel combustion. 

  11. Inglesi-Lotz, R., 2016, The impact of renewable energy consumption to economic growth: a panel data application, Energy Economics, 53, 58-63. 

  12. IPCC (Intergovernmental Panel on Climate Change), 2006, 2006 IPCC guidelines for national greenhouse gas inventories. 

  13. IPCC (Intergovernmental Panel on Climate Change), 2012, Renewable energy sources and climate change mitigation. 

  14. IPCC (Intergovernmental Panel on Climate Change), 2014, Fifth assessment report. 

  15. Iwata, H., Okada, K., 2010, Greenhouse gas emissions and the role of the Kyoto Protocol, Munich Personal RePEc Archive, 22299. 

  16. Ju, X., Xu, C., Hu, Y., Han, X., Wei, G., Du, X., 2017, A Review on the development of photovoltaic/concentrated solar power (PV-SCP) hybrid system, Solar Energy Materials & Solar Cells, 161, 305-327. 

  17. Kafle, S., Parajuli, R., Bhattarai, S., Euh, S. H., Kim, D. H., 2017, A Review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: past, present and future, Renew. Sustain. Energy Rev., 73, 1123-1130. 

  18. KEC (Korea Environment Corporation), 2016, Guidelines for local government greenhouse gas inventories (Ver.4.0). 

  19. KEEI (Korea Energy Economics Institute), 2016, Yearbook of regional energy statistics. 

  20. KETEP (Korea Institute of Energy Technology Evaluation and Planning), 2013, 2013 Energy technology vision roadmap. 

  21. Kharecha, P. A., Hansen, J. E., 2013, Prevented mortality and greenhouse gas emission from historical and projected nuclear power, Environ. Sci. Technol., 47, 4889-4895. 

  22. Krisjansdottir, T. F., Good, C. S., Inman, M. R., Schlanbusch, R. D., Andresen, I., 2016, Embodied greenhouse gas emissions from PV in Norwegian residential zero emission pilot buildings, 133, 155-171. 

  23. Kim, H. G., Paik, C. H., Chung, Y. J., Kim, Y. J., 2014, Mathematical properties and constraints representation for bottom-up to the evaluation of GHG mitigation policies, Transportation Research, 32, 48-56. 

  24. Kim, H. S., 2014, Regional supply strategies for renewable energy sources based on contribution level of GHG emission reduction, Agriculture and Life Science, 32(4), 215-223. 

  25. KMA (Korea Meteorological Administration), 2016, http://www.kma.go.kr/index.jsp. 

  26. KPX (Korea Power exchange), 2012, http://www.kpx.or.kr/. 

  27. Kumar, I., Tyner, W. E., Sinha, K. C., 2016, Input-output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the united State, Energy Policy, 89, 294-301. 

  28. Li, S., Chang, T. H., Chang, S. L., 2017, The policy effectiveness of economic instrument for the photovoltaic and wind power development in the European Union, Renewable Energy, 101, 660-666. 

  29. NREL (National Renewable Energy Laboratory), 2015, Sustainable NREL, Site sustainability plan FY 2016. 

  30. OECD (Organisation for Economic Co-operation and Development), 2002, Development guidance on monitoring and project boundaries for greenhouse gas projects, 27. 

  31. Omer, A. M., 2008, Energy: Environment and sustainable development, Renew. Sustain. Energy Rev., 12, 2265-2300. 

  32. Park, M., Tae, S., Suk, S., Ford, G., Smith, M. E., Steffen, R., 2015, A Study on the sustainable building technology considering to performance of greenhouse gas emission reduction, Procedia Engineering, 118, 1305-1308. 

  33. Park, S. Y., Yun, B. Y., Yun, C. Y., Lee, D. K., Choi, D. G., 2016, An Analysis of the optimum renewable energy portfolio using the bottom-up model: focusing on the electricity generation sector in South Korea, Renew. Sustain. Energy Rev., 53, 319-329. 

  34. Rule, B. M., Worth, Z. J., Boyle, C. A., 2009, Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand, Environ. Sci. Technol., 43, 6406-6413. 

  35. Sasaki, W., 2017, Predictability of global offshore wind and wave power, International Journal of Marine Energy, 17, 98-109. 

  36. Sharifzadeh, M., Lubiano-Walochik, H., Shah, N., 2017, Integrated renewable electricity generation considering uncertainties: the UK roadmap to 50% power generation from wind and solar energies, Renew. Sustain. Energy Rev., 72, 385-398. 

  37. Thomson, R. C., Harrison, G. P., Chick, J. P., 2017, Marginal greenhouse gas emission displacement of wind power in Great Britain, Energy Policy, 101, 201-210. 

  38. UNFCCC (United Nations Framework Convention on Climate Change), 2016, UNFCCC DTU partnership, http://www.cdmpipeline.org. 

  39. WRI (World Resources Institute), 2015, Global protocol for community-scale greenhouse gas emission inventories: an accounting and reporting standard for cities. 

  40. WRI/WBCSD (World Resources Institute/World Business Council for Sustainable Development), 2004, The greenhouse gas protocol: a corporate accounting and reporting standard. 

  41. WRI/WBCSD (World Resources Institute/World Business Council for Sustainable Development), 2005, The greenhouse gas protocol: the GHG protocol for project accounting. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로