$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

딥러닝을 이용한 이미지 레이블 추출 기반 해시태그 추천 시스템 설계 및 구현

Design and Implementation of Hashtag Recommendation System Based on Image Label Extraction using Deep Learning

초록

소셜 미디어에서 일반적으로 게시물을 올릴 때 이미지의 태그 정보를 사용하는데, 태그를 이용하여 주로 검색이 이루어지기 때문이다. 사용자는 태그를 게시물에 붙임으로써 게시물을 많은 사람들에게 노출시키길 원한다. 또한, 사용자는 게시물과 함께 태깅될 태그를 붙이는 행위를 번거롭게 여겨 태깅하지 않은 게시물도 올리게 된다. 본 논문에서는 입력 이미지와 유사한 이미지를 찾아 해당 이미지에 부착된 레이블을 추출하여 그 레이블이 태그로 존재하는 인스타그램의 게시물들을 찾아 게시물 속 존재하는 다른 태그들을 추천해주는 방법을 제안한다. 제안하는 방법에서는 CNN(Convolutional Neural Network) 딥러닝 기법의 모델을 통하여 이미지로 부터 레이블을 추출하여 추출된 레이블로 인스타그램을 크롤링하여 레이블 외의 태그를 정렬하여 추천해준다. 추천된 태그를 이용하여 이미지를 게시하기도 편해지고, 검색의 노출을 높일 수 있고, 검색오류가 적어 높은 정확도를 도출할 수 있음을 알 수 있다.

Abstract

In social media, when posting a post, tag information of an image is generally used because the search is mainly performed using a tag. Users want to expose the post to many people by attaching the tag to the post. Also, the user has trouble posting the tag to be tagged along with the post, and posts that have not been tagged are also posted. In this paper, we propose a method to find an image similar to the input image, extract the label attached to the image, find the posts on instagram, where the label exists as a tag, and recommend other tags in the post. In the proposed method, the label is extracted from the image through the model of the convolutional neural network (CNN) deep learning technique, and the instagram is crawled with the extracted label to sort and recommended tags other than the label. We can see that it is easy to post an image using the recommended tag, increase the exposure of the search, and derive high accuracy due to fewer search errors.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일