$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

지도학습 기반 암상 분류 시 클래스 간 자료 불균형을 고려한 평가지표 개발

Development of Evaluation Metrics that Consider Data Imbalance between Classes in Facies Classification

초록

머신러닝을 이용한 분류 모델 훈련에서 학습자료의 양과 질은 학습한 모델의 성능을 좌우하므로 학습자료 생성이 매우 중요한 역할을 한다. 그러나 자료 생성에 높은 비용이 들어 이상적인 학습자료 생성이 어려울 때에는 클래스 간 자료 불균형 문제가 발생한다. 만약 학습자료로 사용될 탐사자료가 클래스 간 불균형하게 얻어지면, 클래스 별로 균형있는 학습이 이루어지기 힘들다. 따라서 데이터가 상대적으로 적은 클래스는 재현율이 현저히 떨어지게 된다. 그 뿐만 아니라 정확도와 정밀도 등의 평가지표들에 대한 신뢰도가 떨어지게 된다. 따라서 이 연구에서는 두 단계에 걸쳐 자료 불균형 문제를 해소하고자 하였다. 첫 번째로 기존의 정확도와 정밀도를 개선하여 자료 불균형을 고려할 수 있는 새로운 평가지표로 가중정확도와 가중정밀도를 고안하였다. 다음으로 클래스 간의 가중정밀도와 재현율의 균형을 맞추어 주도록 오버샘플링을 수행하였다. 개발한 알고리듬을 물리검층 자료를 이용한 암상 및 공극유체 규명 문제에 적용함으로써 검증하였다. 그 결과 다수 클래스와 소수 클래스들 간의 불균형이 상당 부분 완화되었고, 클래스 간의 경계를 보다 명확하게 확인할 수 있었다.

Abstract

In training a classification model using machine learning, the acquisition of training data is a very important stage, because the amount and quality of the training data greatly influence the model performance. However, when the cost of obtaining data is so high that it is difficult to build ideal training data, the number of samples for each class may be acquired very differently, and a serious data-imbalance problem can occur. If such a problem occurs in the training data, all classes are not trained equally, and classes containing relatively few data will have significantly lower recall values. Additionally, the reliability of evaluation indices such as accuracy and precision will be reduced. Therefore, this study sought to overcome the problem of data imbalance in two stages. First, we introduced weighted accuracy and weighted precision as new evaluation indices that can take into account a data-imbalance ratio by modifying conventional measures of accuracy and precision. Next, oversampling was performed to balance weighted precision and recall among classes. We verified the algorithm by applying it to the problem of facies classification. As a result, the imbalance between majority and minority classes was greatly mitigated, and the boundaries between classes could be more clearly identified.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일