$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가
Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck 원문보기

한국산학기술학회논문지 = Journal of the Korea Academia-Industrial cooperation Society, v.21 no.11, 2020년, pp.683 - 692  

배영민 (서울과학기술대학교 철도전문대학원 글로벌철도시스템학과) ,  오동천 (서울과학기술대학교 철도전문대학원 글로벌철도시스템학과) ,  박용걸 (서울과학기술대학교 철도전문대학원 철도건설공학과)

초록
AI-Helper 아이콘AI-Helper

본 논문에서는 철도교량상판에 적용하는 방수재료 선정을 위한 이음부 및 균열부에 대한 거동 저항 성능평가를 수행하였다. PSC거더 철도 교량상판에서 발생하는 일반적인 변위 범위 조건을 도출하여, 도출한 결과에 따라서 방수재료의 균열 거동 저항 성능평가 방법을 개발하였다. 재안하고자 하는 평가를 위한 균열거동폭 (mm)을 설정하기 위해 레일도상이 설치되어있는 PSC 거더 교량을 대상으로 유한요소 모델링 해석을 수행하였으며, 최소 균열 거동 범위 (약 1.5mm)를 도출하였다. 평가 방법으로서는 교량 상판에 통상적으로 사용되는 시멘트계 도막 시스템, 폴리우레탄 코팅, 접착식 아스팔트 시트 및 합성 고무 겔 복합 아스팔트 시트 시스템 총 4가지 종류의 방수재료를 선정하여, 각 방수재료 종류별 5가지의 시편을 제조하여 성능 평가를 수행하였다. 각 시험편별로 4가지의 균열 거동폭조건 (1.5, 3.0, 4.5, 6.0mm)에 대해 평가를 수행하였으며, 본 연구를 통하여 철도교량에 일반적인 균열 거동 폭을 고려한 평가 기준에 따라 각 방수재료별 누수저항성 평가에 따른 철도교량상판 사용 적합성을 판단하였다.

Abstract AI-Helper 아이콘AI-Helper

A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge st...

주제어

표/그림 (16)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Next, the degradation conditions of a high-speed double-track railroad bridge structure deck is analyzed through FEM and analysis of existing stress factors to propose the requirement for setting the minimum displacement range to be used during testing. Based on these findings and analysis, a new evaluation method is proposed specifically to evaluate the resistance performance of waterproofing materials against joint displacement on railroad bridge decks.
  • First, a PSC bridge structure is modelled , and a time history function of the dynamic load case is applied to the double-track rails and the stress-deformation analysis is derived . Next, the deformation results are isolated for the waterproofing layer and the concrete bridge deck, where upon the stress measured on the waterproofing layer was very minimal (0.
  • For this proposed test method, the concrete deck joint displacement range are used as a reference to establish the minimum displacement range for the testing. While the analysis data can approximate the minimal displacement conditions based on reference analysis of thermal deformation and elastic deformation of concrete, the realistic concrete deformation can reach higher ranges depending on the size of the joint width, and the waterproofing membraneshould be able to withstand the deformation conditions at any given realistic range.
  • While the minimum displacement range can be derived based on the modelling of a typical railroad bridge structure, a precise estimation of joint displacement on the bridge deck is difficult as the displacement range heavily depends on the size of the joint . In this regard, the demonstration of the evaluation method in this study proposes various ranges of joint displacement (from 1.5 mm, minimum, to 6.0 mm, extreme, ranges) to clearly compare the displacement resistance performance of different waterproofing systems (CSC, PUC, SAS and CAS). Furthermore, the stress distribution analysis for the waterproofing membranes based on the joint displacement resistance result shows that for bridge types, SAS and CAS types should be prioritized for usage over the CSC and PUC types.
  • In this study, a joint displacement resistance evaluation method of different waterproofing systems (membranes or materials) is proposed, with the results of which an optimal waterproofing system can be selected that comply to the joint displacement degradation conditions of high-speed railroad bridge decks. The study offers the following conclusions;
  • The study outlines the existing evaluation methods for waterproofing systems and compared to discuss the lack of joint displacement resistance performance test method. Next, the degradation conditions of a high-speed double-track railroad bridge structure deck is analyzed through FEM and analysis of existing stress factors to propose the requirement for setting the minimum displacement range to be used during testing. Based on these findings and analysis, a new evaluation method is proposed specifically to evaluate the resistance performance of waterproofing materials against joint displacement on railroad bridge decks.
  • The displacement load width range was divided into 4 different widths to ensure that the results take into account various types of displacement conditions under maximum loading conditions in consideration of environmental and dynamic loads in railroad concrete bridges. Refer to Table 4 for the joint displacement ranges.
  • The proposed joint displacement resistance performance testing in this study is one such that can evaluate the respective performance of different waterproofing membranes based on changing joint displacement width. It is too early to derive conclusive statements using only the results from the demonstration evaluation conducted in this study, but this demonstration was able to outline which waterproofing system has the highest relative joint displacement resistance performance.
  • Therefore, this study proposes a joint displacement resistance performance of waterproofing systems, and provide an evaluation method, criteria, and demonstration that is suitable for high-speed railroad concrete bridges. The study outlines the existing evaluation methods for waterproofing systems and compared to discuss the lack of joint displacement resistance performance test method. Next, the degradation conditions of a high-speed double-track railroad bridge structure deck is analyzed through FEM and analysis of existing stress factors to propose the requirement for setting the minimum displacement range to be used during testing.
  • Waterproofing membranes must be able to maintain adhesion on to the concrete surface and prevent the formation of leakage path through joint or crack into the reinforced concrete deck section, but there is currently no existing method that can accomplish this evaluation. Therefore, this study proposes a joint displacement resistance performance of waterproofing systems, and provide an evaluation method, criteria, and demonstration that is suitable for high-speed railroad concrete bridges. The study outlines the existing evaluation methods for waterproofing systems and compared to discuss the lack of joint displacement resistance performance test method.
  • Typical high-speed railroad operation speed reaches 200~300 km/h, and Korean train dynamic load averages between 75~120kN/mm2 [10]. To propose the displacement conditions, the bending moment and stress conditions applied to the waterproofing membrane and the concrete bridge deck due to the train operation dynamic load was analyzed through FEM using a MIDAS analysis program. In the analysis, a case of a double-track bridge is modelled the dynamic responses of only one track is investigated and the other track is considered to be the dead load of the bridge, because the flexural rigidity of the bridge is usually thousands of times greater than that of the rails (or even tens of thousands).

대상 데이터

  • For the testing, the specimen is comprised of upper and lower mortar substrate parts. The two substrate are placed together at the cross section interface, wherein forming a concrete joint.
  • The proposed 3D coupling element consists of several rail elements of equal lengths (including the left and right rail), a bridge element, a few sleepers, a series of fasteners, and a series of discrete ballasts. It can also include a bearing that connects a pier node at a supporting point of the bridge.
본문요약 정보가 도움이 되었나요?

참고문헌 (10)

  1. Korean Rail Network Authority, "Development of bridge surface waterproofing system for railroad bridge deck", Performance evaluation research report by the Korean Rail Network Authority, 2006. 

  2. A.R, Price, "Waterproofing of Concrete Bridge Decks: Site Practice and Failures," Transport and Road Research Laboratory, USA, pp. 11-14, 1991. 

  3. O. Dammyr, B. Nilsen, K. Thuro, J. Grondal, "Possible Concepts of Waterproofing of Norwegian TBM Railway Tunnels Civil Engineering for Underground Rail Transport," Rock Mechanics and Rock Engineering, vol. 47, no. 3, pp.1-17, Feb. 2013. DOI: https://doi.org/10.1007/s00603-013-0388-5 

  4. H. Chbani, S. Bouchra, "Determination of fracture toughness in plain concrete specimens by R curve," Frattura ed Integrita Strutturale, vol. 13, no. 49, pp.763-774, July. 2019. DOI: http://doi.org/10.3221/IGF-ESIS.49.68 

  5. D. Benarbia, M. Benguediab, "Determination of Stress Intensity Factor in Concrete Material Under Brazilian Disc and Three-Point Bending Tests Using Finite Element Method," Periodica Polytechnica Mechanical Engineering, vol. 59 no. 4, pp. 199-203, Jan. 2015. DOI:http://doi.org/10.3311/PPme.8368 

  6. N. Taniguchi, T. Kouzuiki, A. Tanahashi, H. Ikariyama, T. Yoda, "A Study about the Waterproofing Systems in the Slab for Railway Bridges," 6th Railway Bridge Slab Symposium Journal, Japan, pp. 213-218, Nov. 2004. 

  7. A. Chini, L. Acquaye, "Effect of elevated curing temperatures on the strength and durability of concrete," Materials and Structures," vol. 38, no.7 pp673-679, Aug. 2006. DOI:https://doi.org/10.1007/BF02484312 

  8. L. Song. Y. Jun, C. Xianhua. Y. Guotao. C. Degou, "Application of Mastic Asphalt Waterproofing Layer in High-Speed Railway Track in Cold Regions," Applied Sciences, vol. 8, no. 5, pp. 667-683, Apr. 2018. DOI: https://doi.org/10.3390/app8050667 

  9. J. Rodrigues, A. Dias, P. Providencia, "Timber-Concrete Composite Bridges: State-of-the-Art Review," Bioresources, vol. 8, no. 4, pp. 6630-6649, Nov. 2013. DOI: http://doi.org/10.15376/biores.8.4.6630-6649 

  10. Transport Infrastructure Ireland, "Waterproofing and Surfacing of Concrete Bridge Decks," TII Publications, Ireland, pp. 1-50, 2000. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로