$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수학 및 과학 간 지적 자원의 사용: 이론적 모형에 대한 실증 연구
A theoretical model for the utilization of intellectual resources between science and mathematics: An empirical study 원문보기

Journal of the Korean Society of Mathematical Education. Series A. The Mathematical Education, v.59 no.4, 2020년, pp.405 - 420  

최경미 (버지니아대학교) ,  서경운 (서울대학교) ,  (아이오와대학교) ,  황지현 (강원대학교)

초록

학생들이 수학과 과학을 배울 때 개발 및 사용하는 지적 자원의 이론적 모형을 구성하였다. 9,300명의 미국 4학년 학생들의 수학 과학 성취도 평가의 응답을 통계적으로 분석하여 이 이론적 모델을 검증하였다. 그 결과는 이론적 모형이 타당함을 보여주며, 4학년 학생들의 과학 학습에서 인식적 실천은 수학 학습에서 인식적 실천의 발달에 영향을 준다.

Abstract AI-Helper 아이콘AI-Helper

There have been mixed reports about the idea of utilization of resources developed from one discipline across disciplinary areas. Grounded with the argument that critical thinking is not domain-specific (Mulnix, 2012; Vaughn, 2005), we developed a theoretical model of intellectual resources (IR) tha...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Given the current demands to use innovative pedagogical approaches in the teaching and learning of STEM where epistemic practices related to inquiry are emphasized, the theoretical model we established and empirically verified with fourth grade students' data has the potential to help in examining different pedagogical approaches that build on the reasoning factors identified in this study.
  • The ITBS science test were composed of one section with 34 multiple-choice items while the mathematics tests had three sections: concepts and estimation, problem solving and data interpretation, and computation. We decide to exclude the mathematics computation section due to the nature of the items in that section: They are to measure simple computation skills (Iowa Testing Program, 2014).
  • Researchers echoed that model evaluation in CFA/SEM is different from the traditional hypothesis tests like t tests, and it is significant to use other possible goodness-of-fit measure to evaluate global model fit (Chen, Currna, Bollen, Kirby, & Paxton, 2008). The decision about model fit should not be made with a single way, so we did not reject our hypothesized model solely due to RMSEA. Focusing on the other indices showing acceptableness of our model, we could consider several reasons about poor fit of RMSEA.
  • With the assumption that critical thinking (cognitive processing) skills acquired in one discipline (science in this study) can be utilized in another disciplinary learning setting (mathematics), it is hypothesized that the cognitive resources required for making inferences in Science (abductive inference and deductive inference in science) are utilized in making of inferences in Mathematics (inductive inference and deductive reasoning in mathematics). This study addresses this question, first, by conceptually establishing common features of cognitive resources in each of the disciplines in the Cognitive Framework established by TIMSS, and then to demonstrate the possible linkages and/or relationships with empirical data. As such, the model shown in [Fig.

대상 데이터

  • The data set includes 9,300 students' responses to 34 science items and 60 mathematics items.
  • The data were fourth grade Iowa students' responses to the Iowa Tests for Basic Skills (ITBS) mathematics and science items collected in each year from 2006 to 2009.

데이터처리

  • We evaluated the fit of the hypothesized model based on the following indices as operationalized in Mplus 7.2 in conjunction with MLR estimation: Comparative Fit Index (CFI), the Tucker-Lewis fit index (TLI), the standardized root mean square residual (SRMR), and the 90% confidence interval of the root mean square error of approximation (RMSEA). Values above .
본문요약 정보가 도움이 되었나요?

참고문헌 (46)

  1. Adey, P., & Shayer, M. (2015). The effects of cognitive acceleration. In Resnick, L. B., Asterhan, C. & Clarke, S. (Eds.), Socializing intelligence through academic talk and dialogue (pp.127-140). Washington, DC: American Educational Research Association. 

  2. Bailin, S. (2002). Critical thinking and science education. Science & Education, 11(4), 361-375. 

  3. Barzilai, S., & Zohar, A. (2016). Epistemic (meta)cognition: Ways of thinking about knowledge and knowing. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 409-424). New York, NY: Routledge. 

  4. Billing, D. (2007). Teaching for transfer of core/key skills in higher education: Cognitive skills. Higher education, 53(4), 483-516. 

  5. Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? Mathematical Modelling. Education, Engineering and Economics. Chichester, UK: Horwood, 222-231. 

  6. Borromeo Ferri, R. B. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95. 

  7. Brown, N. J., Afflerbach, P. P., & Croninger, R. G. (2014). Assessment of critical-analytic thinking. Educational Psychology Review, 26(4), 543-560. 

  8. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. Sage focus editions, 154, 136-136. 

  9. Byrne, B. M. (2012). Multivariate applications series: Structural equation modeling with Mplus: Basic concepts, applications, and programming. New York, NY: Routledge. 

  10. Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Sociological methods & research, 36(4), 462-494. 

  11. Chinn, C. A., & Rinehart, R. W. (2016). In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 460-478). New York, NY: Routledge. 

  12. Choi, K., Lee, Y.-S., & Park, Y. S. (2015). What CDM can tell about what students have learned: An analysis of TIMSS eighth grade mathematics. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1563.1577. doi:10.12973/eurasia.2015.1421a 

  13. Core State Standards Initiative. (2010). Common Core State Standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf 

  14. de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199. 

  15. Elby, A., Macrander, C., & Hammer, D. (2016). Epistemic cognition in science. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 113-127). New York, NY: Routledge. 

  16. Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404-423. 

  17. Greene, J. A., Sandoval, W. A., & Braten, I. (2016). Handbook of Epistemic Cognition. New York, NY: Routledge. 

  18. Hayduk, L. A., & Glaser, D. N. (2000). Jiving the four-step, waltzing around factor analysis, and other serious fun. Structural Equation Modeling, 7(1), 1-35. 

  19. Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modeling: Guidelines for determining model fit. Journal of Business Research Methods, 6, 53-60. 

  20. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. 

  21. Hwang, J., Choi, K., Hand, B. (2016, November). Relationships among mathematics and science reasoning practices. Poster presented at the 38th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Tucson, AZ. 

  22. Hwang, J., Choi, K., & Hand, B. (2020a). Examining domain-general use of reasoning across science and mathematics through performance on standardized assessments. Canadian Journal of Science, Mathematics and Technology Education, 20(3), 521-537. doi:10.1007/s42330-020-00108-4 

  23. Hwang J. Choi, K., & Hand, B. (2020b). Epistemic Actions and Mathematics Achievement. Submitted for publication. 

  24. Iordanou, K., Kendeou, P., & Beker, K. (2016). Argumentative reasoning. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 39-53). New York, NY: Routledge. 

  25. Kline, R. B. (2011). Convergence of structural equation modeling and multilevel modeling. In M. Williams (Ed.), Handbook of methodological innovation. Thousand Oaks, CA: Sage. 

  26. Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry?. Journal of Research in Science Teaching, 42(6), 716. 

  27. Mason, L. (2016). Psychological perspectives on measuring epistemic cognition. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 375-392). New York: Routledge. 

  28. Moshman, D. (2014). Epistemic cognition and development: The psychology of justification and truth. New York, NY: Psychology Press. 

  29. Mullis, I. V. S., Martin, M. O., Ruddock, G. J., OSullivan, C. Y., & Preuschoff, C. (2009). TIMSS 2011 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center Lynch School of Education, Boston College. 

  30. Mulnix, J. W. (2012). Thinking critically about critical thinking. Educational Philosophy and Theory, 44(5), 464-479. 

  31. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author. 

  32. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas, Washington, DC: National Academies Press. 

  33. NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. 

  34. O'Connor, C., Michaels, S., & Caphin, S. (2015). "Scaling Down" to Explore the Role of Talk in Learning: From District Intervention to Controlled Classroom Study. In Resnick, L. B., Asterhan, C. & Clarke, S. (Eds.), Socializing intelligence through academic talk and dialogue (pp.111-126). Washington, DC: American Educational Research Association. 

  35. R Development Core Team. (2010). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org 

  36. Resnick, L. B., & Schantz, F. (2015). Re-thinking Intelligence: schools that build the mind. European Journal of Education, 50(3), 340-349. 

  37. Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of educational research, 99(6), 323-338. 

  38. Sperber, D., Clement, F., Heintz, C., Mascaro, O., Mercier, H., Origgi, G., & Wilson, D. (2010). Epistemic vigilance. Mind & Language, 25(4), 359-393. 

  39. Steiger, J. H. (2000). Point estimation, hypothesis testing, and interval estimation using the RMSEA: Some comments and a reply to Hayduk and Glaser. Structural Equation Modeling, 7(2), 149-162. 

  40. Strauss, A. L. (1987). Qualitative analysis for social scientists. Cambridge University Press. 

  41. Stromso, H., & Kammerer, Y. (2016). Epistemic cognition and reading for understanding in the internet age. In J. A. Green, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 230-246). New York, NY: Routledge. 

  42. Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287-305. doi:10.1037/1082-989X.11.3.287 

  43. Vaughn, L. (2005) The Power of Critical Thinking: Effective reasoning about ordinary and extraordinary claims. Oxford, UK: Oxford University Press. 

  44. Webb, P., Whitlow, J. W., & Venter, D. (2016). From exploratory talk to abstract reasoning: A case for far transfer?. Educational Psychology Review, 29 565-581. 

  45. Yu, C. Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes (Doctoral dissertation, University of California Los Angeles). 

  46. Zawojewski, J. (2010). Problem solving versus modeling. In R Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp. 237-243). New York, NY: Springer. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로