$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

분포형 물수지 모델(WetSpass-M)을 이용한 삽교천 상류 유역에서의 월별 지하수 함양량 산정
Evaluation of Groundwater Recharge using a Distributed Water Balance Model (WetSpass-M model) for the Sapgyo-cheon Upstream Basin 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.26 no.6, 2021년, pp.47 - 64  

안효원 (한국지질자원연구원 지질환경연구본부 지하수연구센터) ,  하규철 (한국지질자원연구원 지질환경연구본부 지하수연구센터)

Abstract AI-Helper 아이콘AI-Helper

In this study, the annual and monthly groundwater recharge for the Sapgyo-cheon upstream basin in Chungnam Province was evaluated by water balance analysis utilizing WetSpass-M model. The modeling input data such as topography, climate parameters, LAI (Leaf Area Index), land use, and soil characteri...

주제어

표/그림 (18)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 물수지 분석을 통해 충남 삽교천 상류 유역에서의 연별 및 월별 지하수 함양량을 산정하고자 하였다. 물수지 분석법 중에서 월별 단위의 평가가 가능하고 연구지역을 보다 상세히 모사할 수 있는 WetSpass-M 모델을 연구지역에 적용하였으며, 입력 자료를 구축하기 위해 ArcGIS, QGIS 및 Python을 연계하여 사용하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Abdollahi, K., 2015, Basin scale water balance modeling for variable hydrological regimes and temporal scales, Ph.D. Vrije Universiteit Brussel, Belgium. 

  2. Abdollahi, K., Bashir, I., Verbeiren, B., Harouna, M.R., Van Griensven, A., Huysmans, M., and Batelaan, O., 2017, A distributed monthly water balance model, formulation and application on Black Volta Basin, Environ. Earth Sci., 76(5), 1-18. 

  3. Allen, R., Pereira, L.A., Raes, D., and Smith, M., 1998, Crop evapotranspiration. FAO Irrigation and Drainage Paper No. 56, Rome, Italy. 300p. 

  4. An, H.W., 2021, Estimation of Groundwater recharge using WetSpass-M model in Sapgyo-cheon upstream basin, M.D. University of science and technology, Korea. 

  5. Arnold, J.G., Muttiah, R.S., Srinivasan, R., and Allen, P.M., 2000, Regional estimation of base flow and groundwater recharge in the upper mississippi river basin, J. Hydrol., 227(1), 21-40. 

  6. Ashaolu, E.D., Olorunfemi, J.F., Ifabiyi, I.P., Abdollahi, K., and Batelaan, O., 2020, Spatial and temporal recharge estimation of the basement complex in Nigeria, West Africa, J. Hydrol., 27, 1-19. 

  7. Batelaan, O. and De Smedt, F., 2001, WetSpass, a flexible, GIS based, distributed recharge methodology for regional groundwater modelling, IAHS Publication, 269, 11-18. 

  8. Batelaan, O. and De Smedt, F., 2007, GIS-based recharge esti-mation by coupling surface-subsurface water balances, J. Hydrol., 337(3-4), 337-355. 

  9. Chung, I.M., Park, S.H., Lee, J.E., and Kim, M.G., 2018, Estimation of distributed groundwater recharge in Jangseong district by using integrated hydrologic model, J. Korean Soc. Civ. Eng., 38(4), 517-526. 

  10. De Groen, M.M. and Savenije, H.H.G., 2006, A monthly interception equation based on the statistical characteristics of daily rainfall, Water Resour. Res., 42(12), 1-10. 

  11. Environmental Geographic Information Service (EGIS), 2021, land use map (2019), http://egis.me.go.kr (Cited 7 January 2021). 

  12. Gwak, Y.S., Cho, J.P., Jung, I.G., Kim, D.W., and Jang, S.M., 2018, Projection of future changes in drought characteristics in Korea peninsula using effective drought index, J. Climate Change Res., 9(1), 31-45. 

  13. Ha, K.C., Park, C.H., Kim, S.H., Shin, E., and Lee, E.H., 2021, Groundwater recharge evaluation on Yangok-ri area of Hongseong using a distributed hydrologic model (VELAS), Econ. Environ. Geol., 54(2), 161-176. 

  14. Ha, R., Shin, H.J., Park, G.A., and Kim, S.J., 2008, Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration Estimation of SLURP Model, Korea Water Resour. Assoc., 1087-1091. 

  15. IPCC, 2014, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds)]. IPCC, Geneva, Switzerland 151 p. 

  16. Jyrkama, M.I. and Sykes, J.F., 2007, The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario), J. Hydrol., 338(3-4), 237-250. 

  17. Kim, N.W., Chung, I.M., Won, Y.S., Lee, J.W., and Lee, B.J., 2006, The estimation of groundwater recharge with spatial-temporal variability at the musimcheon catchment, J. Soil Groundwater Environ., 11(5), 9-19. 

  18. Korea Meteorological Administration(KMA), 2021, Climate data(1981~2020), http://data.kma.go.kr (Cited 7 January 2021). 

  19. Korea Meteorological Administration (KMA), 2018, Analysis of Korean Peninsula Climate Change Prospect, 172p. 

  20. Lee, J.H., Jun, S.W., Lee, M.J., and Hong, H.J., 2010, Coupled Model Development between Groundwater Recharge Quantity and Climate Change in River Watershed II, Green Growth Research 2010-18, Korea Environment Institute, 149p. 

  21. Lee, J.W., Jung, C.G., Kim, D.R., and Kim, S.J., 2018, Assessment of future climate change impact on groundwater level behavior in Geum river basin using SWAT, J. Korea Water Resour. Assoc., 51(3), 247-261. 

  22. Mair, A., Hagedorn, B., Tillery, S., El-Kadi, A.I., Westenbroek, S., Ha, K.C., and Koh, G.W., 2013, Temporal and spatial variability of groundwater recharge on Jeju Island, Korea, J. Hydrol., 501, 213-226. 

  23. Meyboom, P., 1961, Estimating groundwater recharge from stream hydrology, J. Geophys. Res., 66(4), 1203-1214. 

  24. Merz R., Bloschl, G., and Parajka, J., 2006, Spatio-temporal variability of event runoff coefficients, J. Hydrol., 331(3), 591-604. 

  25. Ministry of Environment(ME) and Korea Water Resources Corporation(K-water), 2018, Groundwater annual report 2018, 662p. 

  26. Ministry of Land, Infrastructure and Transport(MOLIT), 2017, Master plan for management of groundwater, 395p. 

  27. National territory information platform, 2021, elevation data, http://map.ngii.go.kr (Cited 7 January 2021). 

  28. NURP US EPA, 1983, Results of the Nationwide Urban Runoff Program. Vol 1-Final report. Water Planning Division, NTIS PB84-18552, Washington DC. 

  29. Park, C.H., Seo, J.A., Lee, J.J., Ha, K.C., and Koo, M.H., 2014, A distributed water balance approach to groundwater recharge estimation for Jeju volcanic island, Korea, Geosci. J., 18(2), 193-207. 

  30. Pistocchi, A., Bouraoui, F., and Bittelli, M., 2008, A simplified parameterization of the monthly topsoil water budget, Water Resour. Res., 44(12), 1-21. 

  31. Raes, D., 2012, Reference Manual, ETO Calculator, Version 3.2. Food an Agriculture Organization of the United Nations Land and Water Division, Rome, Italy. 36p. 

  32. Schroeder, P.R., Cheryl, M.L., and Paul, A.Z., 1994, The hydrologic evaluation of landfill performance (HELP) model, user's guide for version 3, environmental protection Agency Office of Research and Development, 84p. 

  33. Shin, E., Koh, E.H., Ha, K.C., Lee, E.H., and Lee, K.K., 2016, Impact of Climate Change on the Groundwater Recharge and Groundwater Level Variations in Pyoseon Watershed of Jeju Island, Korea, J. Soil Groundwater Environ., 21(6), 22-35. 

  34. Shrestha, S., Bach, T.V., and Pandey, V.P., 2016, Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios, Environ. Sci. Policy, 61, 1-13. 

  35. Soleimani-Motlagh, M., Ghasemieh, H., Talebi, A., Abdollahi, K., and Dragoni, W., 2020, Groundwater budget deficit caused by drought and overexploitation, Water Supply, 20(2), 621-632. 

  36. Sutanto, S.J., Wenninger, J., Coenders-Gerrits, A.M.J., and Uhlenbrook, S., 2012, Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model, Hydrol. Earth Syst. Sci., 16(8), 2605-2616. 

  37. Theis, C.W., 1937, Amount of groundwater recharge in the southern high plains, Transaction, American Geophysical Union 18, 564-568. 

  38. Tilahun, K. and Merkel, B.J., 2009, Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeol. J., 17, 1443-1457. 

  39. WAter Resources Management Information System(WAMIS), 2021, Soil map(2000), http://www.wamis.go.kr (Cited 7 January 2021). 

  40. Westenbroek, S.M., Kelson, V.A., Dripps, W.R., Hunt, R.J., and Bradbury, K.R., 2010, SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge, Techniques and Methods, 52p. 

  41. Wu, J., Zhang, R., and Yang, J, 1996, Analysis of rainfall-recharge relationships, J. Hydrol., 177(1), 143-160. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로