최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기지적과 국토정보 = Journal of cadastre & land informatix, v.51 no.2, 2021년, pp.141 - 150
정종철 (남서울대학교 드론공간정보공학과)
Fine dust is a substance that greatly affects human health, and various studies have been conducted in this regard. Due to the human influence of particulate matter, various studies are being conducted to predict particulate matter grade using past data measured in the monitoring network of Seoul ci...
Ministry of Environment. 2020. Environmental Statistics Yearbook.
Kang MS et al. 2016. Analysis of the correlation between PM10 concentration characteristics and emissions in major metropolitan cities on the Korean Peninsula, Korean Society of Environmental Sciences. 25(8):1065-1076.
Kim YK. 2019. Prediction of Citizens' emotions on home mortgage rates using machine learning algorithms. Journal of cadastre & land InfomatiX. 49(1): 65-84.
Kim WS. 2014. Seoul Metropolitan Government's ultra-fine dust (PM2.5) management plan, Seoul Institute. 2014-182.
Sung SY . 2019. The status of temporal and spatial distribution of fine dust concentrations and the potential influencing factors are reviewed. National Research Institute of Human Settlements. WP 19-04.
Yoo JH. 2011. The redundancy analysis of the air pollution monitoring station in Seoul. Graduate School thesis of Seokyung University.
Lee GH. 2020. Design and analysis of a model for predicting the risk level of fine dust using a complex neural network structure. Graduate degree thesis of Hanyang University.
Lee SB.2019. Research trends on the effects of fine dust on the human body. BRIC View 2019-T26.
Jung JC. 2017. Spatial information application case for appropriate location assessment of PM10 observation network in Seoul city. Journal of cadastre & land InfomatiX. 47(2): 175-184.
Jung JC. 2019. Selection of new particulate matter monitoring stations using Kernel analysis - Elementary schools, Seoul, Korea. Journal of cadastre & land InfomatiX. 47(2): 175-184.
Jo KW. 2019. Evaluation of the suitability of machine learning algorithms for predicting fine dust. Paper of the Korean Society of Information and Communication. 23(1):20-26.
Choi IJ et al.2016.Evaluation of Air Pollution Measurement Network in the Seoul metropolitan area using multivariate analysis method. Korean Society of Environmental Sciences. 25(5):673-681.
Rochelle Schneider dos Santos et al. 2020. A satellite-based spatio-temporal machine learning model to reconstruct daily PM2.5 concentrations across Great Britain, medRxiv 2020.07.19.20157396.
Jan Kleine Deters et al. 2017. Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters, Journal of Electrical and Computer Engineering, Volume 2017, Article ID 5106045.
Hamed Karimian et al. 2019, Evaluation of Different Machine Learning Approaches to Forecasting PM2.5 Mass Concentrations. Aerosol and Air Quality Research, 19: 1400-1410.
Guang Yang et al. 2020, A Hybrid Deep Learning Model to Forecast Particulate Matter Concentration Levels in Seoul, South Korea, Atomsphere, 11, 348; doi:10.3390/atmos11040348.
Lary D.J. et al. 2015, Using Machine Learning to Estimate Global PM2.5 for Environmental Health Studies. Environmental Health Insights 2015.9(S1):41-52.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.