최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.26 no.4, 2021년, pp.307 - 326
이은주 (인하대학교 해양과학과) , 김영택 (국립해양조사원 해양예보과) , 김송학 (인하대학교 해양과학과) , 주호정 (인하대학교 해양과학과) , 박재훈 (인하대학교 해양과학과)
Real-time sea level observations from tide gauges include missing and erroneous values. Classification as abnormal values can be done for the latter by the quality control procedure. Although the 3𝜎 (three standard deviations) rule has been applied in general to eliminate them, it is difficu...
국립해양조사원(KHOA), 2021. "바다누리 해양정보 서비스". http://www.khoa.go.kr/oceangrid/gis/category/reference/distribution.
김마가, 최진용, 방재홍, 이재주, 2019. 임계치 모형과 인공신경망 모형을 이용한 실시간 저수위 수위자료의 이상치 탐지. 한국농공학회, 61(1): 107-120.
Bell, C., J.M. Vassie and P.L. Woodworth, 1999. POL/PSMSL Tidal Analysis Software Kit 2000 (TASK-2000). edited by 2000UKCCMS Proudman Oceanographic Laboratory Permanent Service for Mean Sea Level.
Castelao, G.P., 2021. A machine learning approach to quality control oceanographic data. Computers & Geosciences, 155.
Fourrier, M., L. Coppola, H. Claustre, F. D'Ortenzio, R. Sauzede and J.-P. Gattuso, 2020. A Regional Neural Network Approach to Estimate Water-Column Nutrient Concentrations and Carbonate System Variables in the Mediterranean Sea: CANYON-MED. Frontiers in Marine Science 7.
Goyal, S., T. Jain and Dr. N. Tyagi, 2018. Artificial Neural Network: A Review and its Application in Managing Water Quality Control. International Journal of Scientific Development and Research, 3(6).
Guan, Y. and T. Plotz, 2017. Ensembles of Deep LSTM Learners for Activity Recognition Using Wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(2): 1-28.
Hochreiter, S. and J. Schmidhuber, 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780.
Just, A.C., M.M. De Carli, A. Shtein, M. Dorman, A. Lyapustin and I. Kloog, 2018. Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA. Remote Sens (Basel), 10(5).
Kim, H.J., S.M. Park, B.J. Choi, S.H. Moon and Y.H. Kim, 2020. Spatiotemporal Approaches for Quality Control and Error Correction of Atmospheric Data through Machine Learning. Comput Intell Neurosci, 2020: 7980434.
Linares-Rodriguez, A., J.A. Ruiz-Arias, D. Pozo-Vazquez and J. Tovar-Pescador, 2013. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy, 61: 636-645.
Liu, J., J. Gu, H. Li and K.H. Carlson, 2020. Machine learning and transport simulations for groundwater anomaly detection. Journal of Computational and Applied Mathematics, 380.
Lopez-Lineros, M., J. Estevez, J.V. Giraldez and A. Madueno, 2014. A new quality control procedure based on non-linear autoregressive neural network for validating raw river stage data. Journal of Hydrology, 510: 103-109.
Miau, S. and W.-H. Hung, 2020. River Flooding Forecasting and Anomaly Detection Based on Deep Learning. IEEE Access 8:198384-198402.
Murray, M.T., 1964. A General Method for the Analysis of Hourly Heights of Tide. International Hydrographic Review, 41(2): 91-101.
Omar, S., A. Ngadi and H.H. Jebur, 2013. Machine Learning Techniques for Anomaly Detection: An Overview. International Journal of Computer Applications, 79(2).
Opitz, D. and R. Maclin, 1999. Popular Ensemble Learning: An Empirical Study. Journal of Artificial Intelligence Research, 11: 169-98.
Pastore, V.P., T.G. Zimmerman, S.K. Biswas and S. Bianco, 2020. Annotation-free learning of plankton for classification and anomaly detection. Sci Rep, 10(1): 12142.
Russell, S. and P. Norvig, 2010. Artificial Intelligence: A Modern Approach, Third Edition. Upper Saddle River, New Jersey: Prentice Hall, c2010.
Saini, S. and Preeti, 2015. Advance Applications of Artificial Neural Network. Journal of Basic and Applied Engineering Research, 2(11): 1001-1005.
Sciuto, G., B. Bonaccorso, A. Cancelliere and G. Rossi, 2009. Quality control of daily rainfall data with neural networks. Journal of Hydrology, 364(1-2): 13-22.
UNESCO (United Nations Educational, Scientific and Cultural Organization). 2013. Ocean Data Standards, Vol.3: Recommendation for a Quality Flag Scheme for the Exchange of Oceanographic and Marine Meteorological Data. (IOC Manuals and Guides, 54, Vol. 3.).
Wang, Y., L. Han, W. Liu, S. Yang and Y. Gao, 2019. Study on wavelet neural network based anomaly detection in ocean observing data series. Ocean Engineering, 186.
Yu, J.B. and L.F. Xi, 2009. A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes. Expert Systems with Applications, 36(1): 909-921.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.