$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 비만, 폐쇄성 수면무호흡증과 대사장애
Obesity, Obstructive Sleep Apnea, and Metabolic Dysfunction 원문보기

Korean journal of clinical laboratory science : KJCLS = 대한임상검사과학회지, v.53 no.4, 2021년, pp.285 - 295  

김진관 (중원대학교 임상병리학과) ,  표상신 (중원대학교 임상병리학과) ,  윤대위 (중원대학교 임상병리학과)

초록
AI-Helper 아이콘AI-Helper

수면은 필수적인 생리적 기능일 뿐만 아니라 인간의 성장, 성숙 및 전반적인 건강을 증진시키는 데 중요한 역할을 한다. 수면과 수면 장애대사성 질환에 미치는 영향에 대한 관심이 높아지고 있다. 폐쇄성 수면무호흡증은 일반적인 건강 문제이며, 지난 10년 동안 비만율의 증가로 인해 더 두드러진 대사 질환과 함께 폐쇄성 수면무호흡증유병률이 현저하게 증가했다. 폐쇄성 수면무호흡증에 의한 대사성 질환을 유발하는 근본적인 메커니즘은 다인성일 가능성이 높으며, 완전히 밝혀지지 않고 있지만, 염증과 산화 스트레스의 활성화와 식욕 조절 호르몬의 조절 장애는 폐쇄성 수면무호흡증 환자에게 나타나는 대사 기능 장애와 비만의 중요한 병리 생리학적 성분으로 나타났다. 본 연구에서는 폐쇄성 수면무호흡증과 대사질환의 연관성에 대한 연구 현황과 폐쇄성 수면무호흡증이 이러한 질병을 유발하는 병리생리학적 메커니즘에 대해 검토하고자 한다. 이를 통해 폐쇄성 수면무호흡증과 비만, 그리고 폐쇄성 수면무호흡증과 대사 기능 장애 사이의 잠재적인 상호작용을 이해할 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Sleep plays an important role in maintaining overall human health. There is increasing interest regarding the impact of sleep related disorders on metabolic diseases. Obstructive sleep apnea (OSA) is a common health problem, and in the last decade, the emergence of increasing obesity rates has furth...

Keyword

표/그림 (2)

참고문헌 (90)

  1. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6-10. https://doi.org/10.1016/j.metabol.2018.09.005 

  2. Shin HY, Kang HT. Recent trends in the prevalence of underweight, overweight, and obesity in korean adults: the Korean national health and nutrition examination survey from 1998 to 2014. J Epidemiol. 2017;27:413-419. https://doi.org/10.1016/j.je.2016.08.014 

  3. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70-81. https://doi.org/10.1016/j.smrv.2016.07.002 

  4. Kim J, In K, Kim J, You S, Kang K, Shim J, et al. Prevalence of sleep-disordered breathing in middle-aged korean men and women. Am J Respir Crit Care Med. 2004;170:1108-1113. https://doi.org/10.1164/rccm.200404-519OC 

  5. Dong JY, Zhang YH, Qin LQ. Obstructive sleep apnea and cardiovascular risk: meta-analysis of prospective cohort studies. Atherosclerosis. 2013;229:489-495. https://doi.org/10.1016/j.atherosclerosis.2013.04.026 

  6. Hirotsu C, Haba-Rubio J, Togeiro SM, Marques-Vidal P, Drager LF, Vollenweider P, et al. Obstructive sleep apnoea as a risk factor for incident metabolic syndrome: a joined episono and hypnolaus prospective cohorts study. Eur Respir J. 2018;52. https://doi.org/10.1183/13993003.01150-2018 

  7. Guideline fifteen: Guidelines for polygraphic assessment of sleep-related disorders (polysomnography). American electroencephalographic society. J Clin Neurophysiol. 1994;11:116-24 

  8. Chervin RD, Guilleminault C. Obstructive sleep apnea and related disorders. Neurol Clin. 1996;14:583-609. https://doi.org/10.1016/s0733-8619(05)70275-9 

  9. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The report of an american academy of sleep medicine task force. Sleep. 1999;22:667-89. 

  10. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1:862-865. https://doi.org/10.1016/s0140-6736(81)92140-1 

  11. Practice parameters for the treatment of snoring and obstructive sleep apnea with oral appliances. American sleep disorders association. Sleep. 1995;18:511-3. https://doi.org/10.1093/sleep/18.6.511 

  12. Schmidt-Nowara WW, Meade TE, Hays MB. Treatment of snoring and obstructive sleep apnea with a dental orthosis. Chest. 1991;99:1378-1385. https://doi.org/10.1378/chest.99.6.1378 

  13. Young T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. Jama. 2004;291:2013-2016. https://doi.org/10.1001/jama.291.16.2013 

  14. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the sleep heart health study. Am J Epidemiol. 2004;160:521-30. https://doi.org/10.1093/aje/kwh261 

  15. Chang AM, Halter JB. Aging and insulin secretion. Am J Physiol Endocrinol Metab. 2003;284:E7-12. https://doi.org/10.1152/ajpendo.00366.2002 

  16. Resnick HE, Redline S, Shahar E, Gilpin A, Newman A, Walter R, et al. Diabetes and sleep disturbances: findings from the sleep heart health study. Diabetes Care. 2003;26:702-709. https://doi.org/10.2337/diacare.26.3.702 

  17. Marshall NS, Wong KKH, Phillips CL, Liu PY, Knuiman MW, Grunstein RR. Is sleep apnea an independent risk factor for prevalent and incident diabetes in the busselton health study? Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine. 2009;5:15-20. 

  18. Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type ii diabetes: a population-based study. Am J Respir Crit Care Med. 2005;172:1590-5. https://doi.org/10.1164/rccm.200504-637OC 

  19. Mahmood K, Akhter N, Eldeirawi K, Onal E, Christman JW, Carley DW, et al. Prevalence of type 2 diabetes in patients with obstructive sleep apnea in a multi-ethnic sample. J Clin Sleep Med. 2009;5:215-221. 

  20. Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, et al. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32:1017-1019. https://doi.org/10.2337/dc08-1776 

  21. Lindberg E, Theorell-Haglow J, Svensson M, Gislason T, Berne C, Janson C. Sleep apnea and glucose metabolism: a long-term follow-up in a community-based sample. Chest. 2012;142:935-942. https://doi.org/10.1378/chest.11-1844 

  22. World Health O. Waist circumference and waist-hip ratio: report of a who expert consultation, geneva, 8-11 december 2008. Geneva: World Health Organization; 2011 

  23. Ashwell M, Gibson S. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: analysis of data from the british national diet and nutrition survey of adults aged 19-64 years. Obes Facts. 2009;2:97-103. https://doi.org/10.1159/000203363 

  24. Rubinstein I, Colapinto N, Rotstein LE, Brown IG, Hoffstein V. Improvement in upper airway function after weight loss in patients with obstructive sleep apnea. American Review of Respiratory Disease. 1988;138:1192-1195. https://doi.org/10.1164/ajrccm/138.5.1192 

  25. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011; 11:85-97. https://doi.org/10.1038/nri2921 

  26. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43:S99-s112. https://doi.org/10.1002/hep.20973 

  27. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the united states, 1999-2004. Jama. 2006;295:1549-1555. https://doi.org/10.1001/jama.295.13.1549 

  28. Ford ES. C-reactive protein concentration and cardiovascular disease risk factors in children. Circulation. 2003;108:1053-1058. https://doi.org/10.1161/01.CIR.0000080913.81393.B8 

  29. Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis. Circulation Research. 2005;96:1042-1052. https://doi.org/10.1161/01.RES.0000165803.47776.38 

  30. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26:439-451. https://doi.org/10.1210/er.2005-0005 

  31. Matsuzawa Y. Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2006;3:35-42. https://doi.org/10.1038/ncpcardio0380 

  32. Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88:33-39. https://doi.org/10.1189/jlb.0210072 

  33. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory t cells that affect metabolic parameters. Nat Med. 2009;15:930-939. https://doi.org/10.1038/nm.2002 

  34. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components clock and bmal1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627-631. https://doi.org/10.1038/nature09253 

  35. Van Cauter E, Spiegel K, Tasali E, Leproult R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008;9 Suppl 1:S23-28. https://doi.org/10.1016/s1389-9457(08)70013-3 

  36. Leproult R, Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev. 2010;17:11-21. https://doi.org/10.1159/000262524 

  37. Lago R, Gomez R, Lago F, Gomez-Reino J, Gualillo O. Leptin beyond body weight regulation--current concepts concerning its role in immune function and inflammation. Cell Immunol. 2008;252:139-145. https://doi.org/10.1016/j.cellimm.2007.09.004 

  38. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141:846-850. https://doi.org/10.7326/0003-4819-141-11-200412070-00008 

  39. Chaput JP, Brunet M, Tremblay A. Relationship between short sleeping hours and childhood overweight/obesity: results from the 'quebec en forme' project. Int J Obes (Lond). 2006;30:1080-1085. https://doi.org/10.1038/sj.ijo.0803291 

  40. Jiang F, Zhu S, Yan C, Jin X, Bandla H, Shen X. Sleep and obesity in preschool children. The Journal of Pediatrics. 2009;154: 814-818. https://doi.org/10.1016/j.jpeds.2008.12.043 

  41. Spruyt K, Molfese DL, Gozal D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics. 2011;127:e345-352. https://doi.org/10.1542/peds.2010-0497 

  42. Vgontzas AN. Does obesity play a major role in the pathogenesis of sleep apnoea and its associated manifestations via inflammation, visceral adiposity, and insulin resistance? Arch Physiol Biochem. 2008;114:211-223. https://doi.org/10.1080/13813450802364627 

  43. Rosmond R, Dallman MF, Bjorntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab. 1998;83:1853-1859. https://doi.org/10.1210/jcem.83.6.4843 

  44. Vgontzas AN, Bixler EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev. 2005;9:211-224. https://doi.org/10.1016/j.smrv.2005.01.006 

  45. Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. The Journal of Clinical Endocrinology & Metabolism. 1997;82:1313-1316. https://doi.org/10.1210/jcem.82.5.3950 

  46. Vgontzas AN, Bixler EO, Chrousos GP. Metabolic disturbances in obesity versus sleep apnoea: the importance of visceral obesity and insulin resistance. J Intern Med. 2003;254:32-44. https://doi.org/10.1046/j.1365-2796.2003.01177.x 

  47. Resta O, Foschino-Barbaro MP, Legari G, Talamo S, Bonfitto P, Palumbo A, et al. Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int J Obes Relat Metab Disord. 2001;25:669-675. https://doi.org/10.1038/sj.ijo.0801603 

  48. Drager LF, Lopes HF, Maki-Nunes C, Trombetta IC, Toschi-Dias E, Alves MJ, et al. The impact of obstructive sleep apnea on metabolic and inflammatory markers in consecutive patients with metabolic syndrome. PLoS One. 2010;5:e12065. https://doi.org/10.1371/journal.pone.0012065 

  49. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002;165:677-682. https://doi.org/10.1164/ajrccm.165.5.2104087 

  50. Kim NH, Cho NH, Yun CH, Lee SK, Yoon DW, Cho HJ, et al. Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity. Diabetes Care. 2013;36:3909-3915. https://doi.org/10.2337/dc13-0375 

  51. Vagiakis E, Kapsimalis F, Lagogianni I, Perraki H, Minaritzoglou A, Alexandropoulou K, et al. Gender differences on polysomnographic findings in greek subjects with obstructive sleep apnea syndrome. Sleep Med. 2006;7:424-430. https://doi.org/10.1016/j.sleep.2005.12.014 

  52. Jordan AS, Wellman A, Edwards JK, Schory K, Dover L, MacDonald M, et al. Respiratory control stability and upper airway collapsibility in men and women with obstructive sleep apnea. J Appl Physiol (1985). 2005;99:2020-2027. https://doi.org/10.1152/japplphysiol.00410.2004 

  53. Franco CM, Lima AM, Ataide L, Jr., Lins OG, Castro CM, Bezerra AA, et al. Obstructive sleep apnea severity correlates with cellular and plasma oxidative stress parameters and affective symptoms. J Mol Neurosci. 2012;47:300-310. https://doi.org/10.1007/s12031-012-9738-0 

  54. Villa MP, Supino MC, Fedeli S, Rabasco J, Vitelli O, Del Pozzo M, et al. Urinary concentration of 8-isoprostane as marker of severity of pediatric OSAHS. Sleep Breath. 2014;18:723-729. https://doi.org/10.1007/s11325-013-0934-0 

  55. Wang N, Khan SA, Prabhakar NR, Nanduri J. Impairment of pancreatic β-cell function by chronic intermittent hypoxia. Exp Physiol. 2013;98:1376-1385. https://doi.org/10.1113/expphysiol.2013.072454 

  56. Fang Y, Zhang Q, Tan J, Li L, An X, Lei P. Intermittent hypoxia-induced rat pancreatic β-cell apoptosis and protective effects of antioxidant intervention. Nutrition & Diabetes. 2014;4:e131-e131. https://doi.org/10.1038/nutd.2014.28 

  57. Polak J, Shimoda LA, Drager LF, Undem C, McHugh H, Polotsky VY, et al. Intermittent hypoxia impairs glucose homeostasis in c57bl6/j mice: partial improvement with cessation of the exposure. Sleep. 2013;36:1483-1490; 1490a-1490b. https://doi.org/10.5665/sleep.3040 

  58. Carreras A, Zhang SX, Almendros I, Wang Y, Peris E, Qiao Z, et al. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice. Endocrinology. 2015;156:437-443. https://doi.org/10.1210/en.2014-1706 

  59. Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science. 2013;339:172-177. https://doi.org/10.1126/science.1230721 

  60. Savransky V, Nanayakkara A, Vivero A, Li J, Bevans S, Smith PL, et al. Chronic intermittent hypoxia predisposes to liver injury. Hepatology. 2007;45:1007-1013. https://doi.org/10.1002/hep.21593 

  61. Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL, et al. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1α. Physiological Genomics. 2006;25:450-457. https://doi.org/10.1152/physiolgenomics.00293.2005 

  62. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8:21-34. https://doi.org/10.1111/j.1467-789X.2006.00270.x 

  63. Smith SS, Waight C, Doyle G, Rossa KR, Sullivan KA. Liking for high fat foods in patients with obstructive sleep apnoea. Appetite. 2014;78:185-192. https://doi.org/10.1016/j.appet.2014.03.019 

  64. Beebe DW, Miller N, Kirk S, Daniels SR, Amin R. The association between obstructive sleep apnea and dietary choices among obese individuals during middle to late childhood. Sleep Med. 2011;12:797-99. https://doi.org/10.1016/j.sleep.2010.12.020 

  65. Ong CW, O'Driscoll DM, Truby H, Naughton MT, Hamilton GS. The reciprocal interaction between obesity and obstructive sleep apnoea. Sleep Med Rev. 2013;17:123-131. https://doi.org/10.1016/j.smrv.2012.05.002 

  66. Wang Y, Carreras A, Lee S, Hakim F, Zhang SX, Nair D, et al. Chronic sleep fragmentation promotes obesity in young adult mice. Obesity (Silver Spring). 2014;22:758-762. https://doi.org/10.1002/oby.20616 

  67. Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, et al. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and ptp1b-mediated leptin resistance in male mice. Sleep. 2015;38:31-40. https://doi.org/10.5665/sleep.4320 

  68. Farre R, Montserrat JM, Navajas D. Morbidity due to obstructive sleep apnea: insights from animal models. Curr Opin Pulm Med. 2008;14:530-536. https://doi.org/10.1097/mcp.0b013e328312ed76 

  69. Gozal D. Sleep, sleep disorders and inflammation in children. Sleep Med. 2009;10 Suppl 1:S12-16. https://doi.org/10.1016/j.sleep.2009.07.003 

  70. Lavie L, Lavie P. Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J. 2009;33:1467-1484. https://doi.org/10.1183/09031936.00086608 

  71. Valleggi S, Devaraj S, Dasu MR, Jialal I. C-reactive protein adversely alters the protein-protein interaction of the endothelial isoform of nitric oxide synthase. Clin Chem. 2010;56:1345-1348. https://doi.org/10.1373/clinchem.2009.142364 

  72. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, et al. Elevated levels of c-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation. 2003;107:1129-1134. https://doi.org/10.1161/01.cir.0000052627.99976.18 

  73. Mehra R, Storfer-Isser A, Kirchner HL, Johnson N, Jenny N, Tracy RP, et al. Soluble interleukin 6 receptor: a novel marker of moderate to severe sleep-related breathing disorder. Archives of Internal Medicine. 2006;166:1725-1731. https://doi.org/10.1001/archinte.166.16.1725 

  74. Gozal D, Serpero LD, Sans Capdevila O, Kheirandish-Gozal L. Systemic inflammation in non-obese children with obstructive sleep apnea. Sleep Med. 2008;9:254-259. https://doi.org/10.1016/j.sleep.2007.04.013 

  75. Kritchevsky SB, Cesari M, Pahor M. Inflammatory markers and cardiovascular health in older adults. Cardiovasc Res. 2005;66:265-275. https://doi.org/10.1016/j.cardiores.2004.12.026 

  76. McNicholas WT. Obstructive sleep apnea and inflammation. Progress in Cardiovascular Diseases. 2009;51:392-399. https://doi.org/https://doi.org/10.1016/j.pcad.2008.10.005 

  77. Gozal D, Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med. 2008;177:369-375. https://doi.org/10.1164/rccm.200608-1190PP 

  78. Dyugovskaya L, Lavie P, Hirsh M, Lavie L. Activated cd8+ t-lymphocytes in obstructive sleep apnoea. European Respiratory Journal. 2005;25:820-828. https://doi.org/10.1183/09031936.05.00103204 

  79. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836-843. https://doi.org/10.1056/nejm200003233421202 

  80. Lusis AJ. Atherosclerosis. Nature. 2000;407:233-241. https://doi.org/10.1038/35025203 

  81. Li AM, Chan MH, Yin J, So HK, Ng SK, Chan IH, et al. C-reactive protein in children with obstructive sleep apnea and the effects of treatment. Pediatr Pulmonol. 2008;43:34-40. https://doi.org/10.1002/ppul.20732 

  82. Kheirandish-Gozal L, Capdevila OS, Tauman R, Gozal D. Plasma c-reactive protein in nonobese children with obstructive sleep apnea before and after adenotonsillectomy. J Clin Sleep Med. 2006;2:301-304. 

  83. Guilleminault C, Kirisoglu C, Ohayon MM. C-reactive protein and sleep-disordered breathing. Sleep. 2004;27:1507-1511. https://doi.org/10.1093/sleep/27.8.1507 

  84. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated c-reactive protein levels in overweight and obese adults. Jama. 1999;282:2131-2135. https://doi.org/10.1001/jama.282.22.2131 

  85. Htoo AK, Greenberg H, Tongia S, Chen G, Henderson T, Wilson D, et al. Activation of nuclear factor kappab in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath. 2006;10:43-50. https://doi.org/10.1007/s11325-005-0046-6 

  86. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y. Effects of obstructive sleep apnea on circulating icam-1, il-8, and mcp-1. J Appl Physiol (1985). 2003;94:179-184. https://doi.org/10.1152/japplphysiol.00177.2002 

  87. Ciftci TU, Kokturk O, Bukan N, Bilgihan A. The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome. Cytokine. 2004;28:87-91. https://doi.org/10.1016/j.cyto.2004.07.003 

  88. Bingol Z, Karaayvaz EB, Telci A, Bilge AK, Okumus G, Kiyan E. Leptin and adiponectin levels in obstructive sleep apnea phenotypes. Biomark Med. 2019;13:865-874. https://doi.org/10.2217/bmm-2018-0293 

  89. Badran M, Abuyassin B, Golbidi S, Ayas N, Laher I. Alpha lipoic acid improves endothelial function and oxidative stress in mice exposed to chronic intermittent hypoxia. Oxid Med Cell Longev. 2019;2019:4093018. https://doi.org/10.1155/2019/4093018 

  90. Lee SJ, Kim JK. Inflammation and insufficient or disordered sleep. Korean J Clin Lab Sci. 2015;47:97-104. https://doi.org/10.15324/kjcls.2015.47.3.97 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로