$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

동해안 화진포 석호 주변 대수층 내 담수-염수 경계면 분석에 관한 연구
A Study on Analysis of Freshwater-saltwater Interface in the Aquifer around Hwajinpo Lagoon on the Eastern Coast of Korea 원문보기

자원환경지질 = Economic and environmental geology, v.54 no.6, 2021년, pp.699 - 707  

김민지 (이화여자대학교 과학교육과) ,  김동진 (강원대학교 환경연구소) ,  전성천 ((주)지오그린21) ,  이정훈 (이화여자대학교 과학교육과)

초록
AI-Helper 아이콘AI-Helper

동해안에 위치한 화진포 석호는 담수와 염수가 혼합되는 환경으로 생물 다양성이 풍부하여 높은 보존 가치를 지니고 있어 체계적인 관리가 필요하다. 석호의 현재 환경에 대한 분석을 위해 호소수에 영향이 큰 주변 대수층의 지하수 수위 분포와 지하수 흐름의 특성을 파악하였다. 또한 호소수의 염분도가 유지되는 기작으로 추정되는 대수층으로의 해수침투의 영향을 파악하기 위해 수리지구 화학적 변동을 분석하였다. 연구 결과 사주지역의 대수층에 쐐기형태의 담수-염수 경계면이 분포하며, 강우가 적은 기간이 지속되고 온도가 높아 석호의 증발이 일어날 경우 담수-염수 경계면이 상승하여 지하수를 통한 해수의 유입 가능성이 높은 것으로 판단된다. 수리지구 화학적 특성으로는 이온델타(혼합된 지하수의 이론적인 화학조성과 실제 시료가 가지는 값과의 차이) 값을 산출하여 해수 침투에 따른 대수층 내에서 양이온 교환반응 및 침전 반응이 일어난 것으로 추정하였다. 각 지점별로 해수가 혼합된 비율을 계산하기 위해서 산소동위원소와 염소이온을 추적자로 사용하였으며 혼합비의 평균값은 0.3, 최대값은 0.87을 나타내었다. 전체적인 혼합비 결과는 해안에서의 거리에 따라 분포하는 것으로 판단되나, 이론적인 예상과는 상이한 결과가 일부 존재하는데 그 부근의 대수층 특성이 반영된 것으로 판단된다. 더욱 구체적인 분석을 위해서는 계절적인 변화와 해수침투 기작을 모사하는 등 추가적인 연구가 필요할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Hwajinpo Lagoon, located on the eastern coast of Korea, is a unique environment where freshwater and saltwater are mixed. Systematic management of the lagoon is required because it is a biodiversity-rich and area of high conservation value. The existing environment of the lagoon was evaluated by ide...

주제어

참고문헌 (24)

  1. Andersen, M.S., Nyvang, V., Jakobsen, R. and Postma, D. (2005) Geochemical processes and solute transport at the seawater/freshwater interface of a sandy aquifer. Geochim. Cosmochim. Acta, v.69, p.3979-3994. doi: 10.1016/j.gca.2005.03.017 

  2. Chang, S.W., Chung, I.M., Kim, M.G., Tolera, M. and Koh, G.W. (2019) Application of GALDIT in assessing the seawater intrusion vulnerability of Jeju Island, South Korea. Water, v.11, p.1824. doi: 10.3390/w11091824 

  3. Chang, S.W., Chung, I.M., Kim, M.G. and Yifru, B.A. (2020) Vulnerability assessment considering impact of future groundwater exploitation on coastal groundwater resources in northeastern Jeju Island, South Korea. Environ. Earth Sci., v.79, p.498. doi: 10.1007/s12665-020-09254-2 

  4. Cho, J.N. and Woo, K.S. (2018) Proposal for legal protection of the geosites in National Geoparks in Korea. J. Geol. Soc. Korea, v.54, p.237-256 (in Korean with English abstract) 

  5. Colombani, N. and Mastrocicco, M. (2017) Modelling the salinization of a coastal lagoon-aquifer system. IOP Conf. Ser.: Earth Environ. Sci., v.82, 012003. doi: 10.1088/1755-1315/82/1/012003 

  6. Jeen, S.W., Kang, J., Jung, H. and Lee, J. (2021) Review of Seawater Intrusion in Western Coastal Regions of South Korea. Water, v.13 p.761. doi: 10.3390/w13060761 

  7. Kim, J.H., Kim, S.Y., Hong, J.K., Nam, G.H., An, J.H., Lee, B.Y. and Kim, J.S. (2017). Floristic study of lagoon areas on the eastern coast in Korean peninsula. Korean J. Pl. Taxon., v.47, p.51-93. doi: 10.11110/kjpt.2017.47.1.51 

  8. Kim, K.Y., Seong, H., Kim, T., Park, K.H., Woo, N.C., Park, Y.S., Koh, G.W. and Park, W.B. (2006) Tidal effects on variations of fresh-saltwater interface and groundwater flow in a multilayered coastal aquifer on a volcanic island (Jeju Island, Korea). J. Hydrol., v.330, p.525-542. doi: 10.1016/j.jhydrol.2006.04.022 

  9. Kim, Y.T., Hyun, S.G., Cheong, J.Y., Woo, N.C. and Lee, S. (2018) Hydrogeochemistry in the coastal area during construction of geological repository. J. Hydrol., v.562, p.40-49. doi: 10.1016/j.jhydrol.2018.04.071 

  10. Kwon, E., Park, J., Lee, J.M., Kim, Y.-T. and Woo, N.C. (2020) Spatiotemporal changes in hydrogeochemistry of coastal groundwater through the construction of underground disposal facility for low and intermediate level radioactive wastes in Korea. J. Hydrol., v.584, 124750. doi: 10.1016/j.jhydrol.2020.124750 

  11. Lee, E., Lim, J.W., Moon, H.S. and Lee, K.K. (2015) Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability. Environ. Earth Sci., v.73, p.1179-1190. doi: 10.1007/s12665-014-3473-5 

  12. Lee, J. (2018) A study on propagation of uncertainties for a mixing ratio calculation by seawater intrusion. J. Geo. Soc. Korea, v.54, p.579-584. (in Korean with English abstract) 

  13. Lee, J., Kim, J.H., Kim, H.M. and Chang, H.W. (2007) Statistical approach to determine the salinized ground water flow path and hydrogeochemical features around the underground LPG cavern, Korea. Hydrol. Process., v.21, p.3615-3626. doi: 10.1002/hyp.6589 

  14. Lee, J., Kim, R.H. and Chang, H.W. (2003) Interaction between groundwater quality and hydraulic head in an area around an underground LPG storage cavern, Korea. Environ. Geol., v.43, p.901-912. doi: 10.1007/s00254-002-0720-y 

  15. Lim, J.W., Lee, E., Moon, H.S. and Lee, K.K. (2013) Integrated investigation of seawater intrusion around oil storage caverns in a coastal fractured aquifer using hydrogeochemical and isotopic data. J. Hydrol., v.486, p.202-210. doi: 10.1016/j.jhydrol.2013.01.023 

  16. Liu, Y., Jiao, J.J., Liang, W. and Kuang, X. (2017) Hydrogeochemical characteristics in coastal groundwater mixing zone. Applied Geochemistry, v.85, p.49-60. doi: 10.1016/j.apgeochem.2017.09.002 

  17. Mencio, A., Casamitjana, X., Mas-Pla, J., Coll, N., Compte, J., Martinoy, M., Pascual, J. and Quintana, X.D. (2017) Groundwater dependence of coastal lagoons: The case of La Pletera salt marshes (NE Catalonia). J. Hydrol., v.552, p.793-806. doi: 10.1016/j.jhydrol.2017.07.034 

  18. Parkhurst D.L. and Appelo C.A.J. (1999) User's guide to PHREEQC (Version 2)-A computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. U.S. Geol. Surv. Water Resour. Inv. Rep., 99-4259. doi: 10.3133/wri994259 

  19. Park, S.C., Choi J.S., Choi E.Y., Jang Y.S., Lee K.Y. and Choi, J.K. (2007) The Characteristics of Fish Community in the Lagoon Hwajinpo, Korea. Korean J. Limnol., v.40, p.449-458. (in Korean with English abstract) 

  20. Rodellas, V., Stieglitz, T.C., Andrisoa, A., Cook, P.G., Raimbault, P., Tamborski, J.J., Beek, P. and Radakovitch, O. (2018) Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Sci. Total Environ., v.642, p.764-780. doi: 10.1016/j.scitotenv.2018.06.095 

  21. Shin, K., Koh, D.C., Jung, H. and Lee, J. (2020) The Hydrogeochemical Characteristics of Groundwater Subjected to Seawater Intrusion in the Archipelago, Korea. Water, v.12, p.1542. doi: 10.3390/w12061542 

  22. Verruijt, A. (1968) A note on the Ghyben-Herzberg formula. Hydrolog. Sci. J., v.13, p.43-46. doi: 10.1080/02626666809493624 

  23. Yum, J., Yu, K., Takemura, K., Naruse, T., Kitamura, A., Kitagawa, H. and Kim, J. (2004) Holocene Evolution of the Outer Lake of Hwajinpo Lagoon On the Eastern Coast of Korea; Environmental Changes with Holocene Sea-Level Fluctuation of the East Sea (Sea of Japan). Radiocarbon, v.46, p.797-808. doi: 10.1017/S0033822200035839 

  24. Yum, J., Yu, K., Yoshikazu, S., Takao, T. and Tadashi, N. (2002) Depositional environmental change during the last 400 years in the Hwajinpo lagoon on the eastern coast of Korea. J. Geo. Soc. Korea, v.38, p.21-32. (in Korean with English abstract) 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로