$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Selecting Appropriate Seedling Age for Restoration Using Comparative Analysis of Physiological Characteristics by Age in Abies koreana Wilson 원문보기

Journal of forest and environmental science, v.37 no.4, 2021년, pp.315 - 322  

Seo, Han-Na (Forest Bioinformation Division, National Institute of Forest Science) ,  Chae, Seung-Beom (Forest Bioinformation Division, National Institute of Forest Science) ,  Lim, Hyo-In (Forest Bioinformation Division, National Institute of Forest Science) ,  Han, Sim-Hee (Forest Microbiology Division, National Institute of Forest Science) ,  Lee, Kiwoong (Forest Ecology Division, National Institute of Forest Science)

Abstract AI-Helper 아이콘AI-Helper

The aim of this study was to investigate the sensitivity to environmental stress, and changes in the photosynthesis capacity in Abies koreana seedlings by age and to suggest the most effective age for restoration. To identify these physiological characteristics of A. koreana, the chlorophyll fluores...

주제어

표/그림 (6)

참고문헌 (44)

  1. Alscher RG, Hess JL. 1993. Antioxidants in Higher Plants. CRC Press, Boca Raton, FL, 174 pp. 

  2. Asada K. 1999. The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601-639. 

  3. Asanok L, Marod D. 2016. Environmental Factors Influencing Tree Species Regeneration in Different Forest Stands Growing on a Limestone Hill in Phrae Province, Northern Thailand. J For Environ Sci 32: 237-252. 

  4. Bjorkman O, Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489-504. 

  5. Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG. 1989. Chlorophyll Fluorescence as a Probe of the Photosynthetic Competence of Leaves in the Field: A Review of Current Instrumentation. Funct Ecol 3: 497-514. 

  6. Chae HM, Yun YJ. 2018. Comparison of the Meteorological Factors on the Forestland and Weather Station in the Middle Area of Korea. J For Environ Sci 34: 249-252. 

  7. Crawford RMM. 1989. Studies in Plant Survival: Ecological Case Histories of Plant Adaptation to Adversity. Blackwell Scientific, Oxford, pp 253-254. 

  8. Cregg BM, Duck MW, Rios CM, Rowe DB, Koelling MR. 2004. Chlorophyll Fluorescence and Needle Chlorophyll Concentration of Fir (Abies sp.) Seedlings in Response to pH. HortScience 39: 1121-1125. 

  9. Evans JR. 1987. The Dependence of Quantum Yield on Wavelength and Growth Irradiance. Funct Plant Biol 14: 69-79. 

  10. Falqueto AR, da Silva Junior RA, Gomes MTG, Martins JPR, Silva DM, Partelli FL. 2017. Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Sci Hortic 224: 238-243. 

  11. Farjon A. 1990. Pinaceae, Drawings and Descriptions of the Genera: Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Scientific Books, Konigstein. 

  12. Greenwood MS, O'Brien CL, Schatz JD, Diggins CA, Day ME, Jacobson GL, White AS, Wagner RG. 2008. Is early life cycle success a determinant of the abundance of red spruce and balsam fir? Can J For Res 38: 2295-2305. 

  13. Hazrati S, Tahmasebi-Sarvestani Z, Modarres-Sanavy SA, Mokhtassi-Bidgoli A, Nicola S. 2016. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol Biochem 106: 141-148. 

  14. Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen THH. 2003. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81: 1247-1266. 

  15. International Union for Conservation of Nature and Natural Resources. Species Survival Commission. 2013. Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. Gland, Switzerland IUCN Species Survival Commission. 

  16. Katahata SI, Naramoto M, Kakubari Y, Mukai Y. 2007. Seasonal changes in photosynthesis and nitrogen allocation in leaves of different ages in evergreen understory shrub Daphniphyllum humile. Trees 21: 619-629. 

  17. Kim GT, Kim JS, Choo GC. 1991. Studies on the Structure of Forest Community at Banyabong Area-Abies koreana Forest. Korean J Environ Ecol 5: 25-31. (in Korean with English abstract) 

  18. Kim PG, Lee EJ. 2001. Ecophysiology of Photosynthesis 1: Effects of Light Intensity and Intercellular CO 2 Pressure on Photosynthesis. Korean J Agric For Meteorol 3: 126-133. (in Korean) 

  19. Kohyama T. 1983. Seedling stage of two subalpine Abies species in distinction from sapling stage: a matter-economic analysis. Bot Mag Tokyo 96: 49-65. 

  20. Koo KA, Kim DB. 2020. Review Forty-year Studies of Korean fir (Abies koreana Wilson). Korean J Environ Ecol 34: 358-371. (in Korean with English abstract) 

  21. Koo KA, Park WK, Kong WS. 2001. Dendrochronological Analysis of Abies koreana W. at Mt. Halla, Korea: Effects of Climate Change on the Growths. Korean J Ecol 24: 281-288. 

  22. Krause GH, Weis E. 1984. Chlorophyll fluorescence as a tool in plant physiology: II. Interpretation of fluorescence signals. Photosynth Res 5: 139-157. 

  23. Krishnamoorthy M, Palanisamy K, Francis AP, Gireesan K. 2016. Impact of Environmental Factors and Altitude on Growth and Reproductive Characteristics of Teak (Tectona grandis Linn. f.) in Southern India. J For Environ Sci 32: 353-366. 

  24. Kumar J, Pratap A, Kumar S. 2015. Phenomics in Crop Plants: Trends, Options and Limitations. Springer India, New Delhi, pp 181-194. 

  25. Lim JH, Woo SY, Kwon MJ, Chun JH, Shin JH. 2006. Photosynthetic Capacity and Water Use Efficiency under Different Temperature Regimes on Healthy and Declining Korean Fir in Mt. Halla. J Korean For Soc 95: 705-710. (in Korean with English abstract) 

  26. Liu T. 1971. A Monograph of the Genus Abies. National Taiwan University, Taipei, 608 pp. 

  27. Lovelock CE, Osmond CB, Jebb M. 1994. Photoinhibition and recovery in tropical plant species: response to disturbance. Oecologia 97: 297-307. 

  28. Muller P, Li XP, Niyogi KK. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558-1566. 

  29. Oh SJ, Koh JG, Kim ES, Oh MY, Koh SC. 2001. Diurnal and Seasonal Variation of Chlorophyll Fluorescence from Korean Fir Plants on Mt. Halla. Korean J Environ Biol 19: 43-48. (in Korean with English abstract) 

  30. Oh SJ, Koh SC. 2004. Chlorophyll Fluorescence and Antioxidative Enzyme Activity of Crinum Leaves Exposed to Natural Environmental Stress in Winter. Korean J Environ Biol 22: 233-241. (in Korean with English abstract) 

  31. Park HC, Lee JH, Lee GG, Um GJ. 2015. Environmental features of the distribution areas and climate sensitivity assesment of Korean Fir and Khinghan Fir. J Environ Impact Assess 24: 260-277. (in Korean with English abstract) 

  32. Reinhardt K, Johnson DM, Smith WK. 2009. Age-class differences in shoot photosynthesis and water relations of Fraser fir (Abies fraseri), southern Appalachian Mountains, USA. Can J For Res 39: 193-197. 

  33. Robakowski P, Bielinis E. 2017. Needle age dependence of photosynthesis along a light gradient within an Abies alba crown. Acta Physiol Plant 39: 83. 

  34. Ruban AV. 2016. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Plant Physiol 170: 1903-1916. 

  35. Smith WK, Germino MJ, Hancock TE, Johnson DM. 2003. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23: 1101-1112. 

  36. Song KM, Kang YJ, Hyeon HJ. 2014. Vegetation Structure at the Slope Direction and Characteristic of Seedlings of Abies koreana in Hallasan Mountain. J Environ Sci Int 23: 39-46. (in Korean with English abstract) 

  37. Song KM, Kim JH, Choi HS. 2020. Growth Changes in Abies koreana Seedlings of the Hallasan Mountain Over a 10-year Period. J Environ Sci Int 29: 209-218. (in Korean with English abstract) 

  38. Strasser RJ, Srivastava A, Tsimilli-Michael M. 2000. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. In: Probing Photosynthesis: Mechanism, Regulation and Adaptation (Yunus M, Pathre U, Mohanty P, eds). CRC Press, Boca Raton, pp 445-483. 

  39. Tanaka A. 2007. Photosynthetic activity in winter needles of the evergreen tree Taxus cuspidata at low temperatures. Tree Physiol 27: 641-648. 

  40. Teskey RO, Grier CC, Hinckley TM. 1984. Change in photosynthesis and water relations with age and season in Abies amabilis. Can J For Res 14: 77-84. 

  41. Wang S, Li Y, Ju W, Chen B, Chen J, Croft H, Mickler RA, Yang F. 2020. Estimation of Leaf Photosynthetic Capacity from Leaf Chlorophyll Content and Leaf Age in a Subtropical Evergreen Coniferous Plantation. J Geophys Res Biogeosci 125: e2019JG005020. 

  42. Weng JH, Liao TS, Sun KH, Chung JC, Lin CP, Chu CH. 2005. Seasonal variations in photosynthesis of Picea morrisonicola growing in the subalpine region of subtropical Taiwan. Tree Physiol 25: 973-979. 

  43. Yang JC, Yi DK, Joo MJ, Choi K. 2015. Phylogeographic study of Abies koreana and Abies nephrolepis in Korea based on mitochondrial DNA. Korean J Pl Taxon 45: 254-261. (in Korean with English abstract) 

  44. Zhou H, Xu M, Pan H, Yu X. 2015. Leaf-age effects on temperature responses of photosynthesis and respiration of an alpine oak, Quercus aquifolioides, in southwestern China. Tree Physiol 35: 1236-1248. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로