$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Cations of Soil Minerals and Carbon Stabilization of Three Land Use Types in Gambari Forest Reserve, Nigeria 원문보기

Journal of forest and environmental science, v.37 no.2, 2021년, pp.116 - 127  

Falade, Oladele Fisayo (Department of Forest Production and Products, University of Ibadan) ,  Rufai, Samsideen Olabiyi (Forestry Research Institute of Nigeria)

Abstract AI-Helper 아이콘AI-Helper

Predicting carbon distribution of soil aggregates is difficult due to complexity in organo-mineral formation. This limits global warming mitigation through soil carbon sequestration. Therefore, knowledge of land use effect on carbon stabilization requires quantification of soil mineral cations. The ...

주제어

표/그림 (8)

참고문헌 (32)

  1. Akinyemi OD. 1998. Ecological studies on a dry lowland rainforest: case study of Onigambari Forest Reserve. PhD thesis. University of Ibadan, Ibadan, Nigeria. (in English) 

  2. Bruun TB, Elberling B, Christensen BT. 2010. Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biol Biochem 42: 888-895. 

  3. Chacon P, Lorenz K, Lal R, Calhoun FG, Fausey NR. 2015. Association of soil organic carbon with physically separated soil fractions in different land uses of Costa Rica. Acta Agric Scand B Soil Plant Sci 65: 448-459. 

  4. de Oliveira Ferreira A, de Moraes Sa JC, Lal R, Tivet F, Briedis C, Inagaki TM, Goncalves DRP, Romaniw J. 2018. Macroaggregation and soil organic carbon restoration in a highly weathered Brazilian Oxisol after two decades under no-till. Sci Total Environ 621: 1559-1567. 

  5. Eusterhues K, Rumpel C, Kogel-Knabner I. 2005. Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Eur J Soil Sci 56: 753-763. 

  6. Foth HD. 1990. Fundamentals of Soil Science. 8th ed. Wiley, New York, NY, pp 260. 

  7. Intergovernmental Panel on Climate Change (IPCC) 2000. Land Use, Land-Use Change, and Forestry. Cambridge University Press, Cambridge, 375 pp. 

  8. Jiang X, Hu Y, Bedell JH, Xie D, Wright AL. 2011. Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage. Soil Use Manag 27: 28-35. 

  9. Kaiser K, Guggenberger G. 2003. Mineral surfaces and soil organic matter. Eur J Soil Sci 54: 219-236. 

  10. Kaiser M, Ellerbrock RH, Wulf M, Dultz S, Hierath C, Sommer M. 2012. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use. J Geophys Res Biogeosci 117: G02018. 

  11. Khandakar T, Guppy C, Tighe M, Rabbi SMF, Daniel H. 2017. Increased Carbon Stabilization in Australian Ferrosol with High Carbon Saturation Deficit. Commun Soil Sci Plant Anal 48: 1772-1780. 

  12. Lopez-Sangil L, Rovira P. 2013. Sequential chemical extractions of the mineral-associated soil organic matter: an integrated approach for the fractionation of organo-mineral complexes. Soil Biol Biochem 62: 57-67. 

  13. Lutzow Mv, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions- a review. Eur J Soil Sci 57: 426-445. 

  14. Mitchell JK, Soga K. 2005. Fundamentals of Soil Behavior. Wiley, Hoboken, NJ, pp 58. 

  15. Morris SJ, Bohm S, Haile-Mariam S, Paul EA. 2007. Evaluation of carbon accrual in afforested agricultural soils. Global Change Biol 13: 1145-1156. 

  16. O'Brien SL, Jastrow JD, Grimley DA, Gonzalez-Meler MA. 2015. Edaphic controls on soil organic carbon stocks in restored grasslands. Geoderma 251-252: 117-123. 

  17. Oades JM. 1988. The retention of organic matter in soils. Biogeochemistry 5: 35-70. 

  18. Rasmussen C, Heckman K, Wieder WR, Keiluweit M, Lawrence CR, Berhe AA, Blankinship JC, Crow SE, Druhan JL, Hicks Pries CE, Marin-Spiotta E, Plante AF, Schadel C, Schimel JP, Sierra CA, Thompson A, Wagai R. 2018. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137: 297-306. 

  19. Righi D, Elsass F. 1996. Characterization of Soil Clay Minerals: Decomposition of X-Ray Diffraction Diagrams and High-Resolution Electron Microscopy. Clays Clay Miner 44: 791-800. 

  20. Rowley MC, Grand S, Verrecchia EP. 2018. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137: 27-49. 

  21. Sa JCM, Cerri CC, Dick WA, Lal R, Filho SPV, Piccolo MC, Feigl BE. 2001. Organic Matter Dynamics and Carbon Sequestration Rates for a Tillage Chronosequence in a Brazilian Oxisol. Soil Sci Soc Am J 65: 1486-1499. 

  22. Sanderman J, Maddern T, Baldock J. 2014. Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals. Biogeochemistry 121: 409-424. 

  23. Sausen TL, de Paula Schaefer GF, Tomazi M, dos Santos LS, Bayer C, Rosa LMG. 2014. Clay content drives carbon stocks in soils under a plantation of Eucalyptus saligna Labill. in southern Brazil. Acta Bot Bras 28: 266-273. 

  24. Schumacher BA. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center, United States Environmental Protection Agency (USPA), Las Vegas, NV. NCEA-C-1282. pp 22. 

  25. Soil and Plant Analysis Council (SPAC). 1999. Soil Analysis: Handbook of Reference Methods. CRC Press, Boca Raton, FL, pp 178. 

  26. Souza IF, Almeida LFJ, Jesus GL, Kleber M, Silva IR. 2017. The mechanisms of organic carbon protection and dynamics of C-saturation in Oxisols vary with particle-size distribution. Eur J Soil Sci 68: 726-739. 

  27. Sposito G, Skipper NT, Sutton R, Park S, Soper AK, Greathouse JA. 1999. Surface geochemistry of the clay minerals. Proc Natl Acad Sci U S A 96: 3358-3364. 

  28. Sposito G. 2008. The Chemistry of Soils. 2nd ed. Oxford University Press, New York, NY, 329 pp. 

  29. Tan KH. 2005. Principles of Soil Chemistry. 3rd ed. Marcel Dekker, New York, NY, 821 pp. 

  30. Velde B, Peck T. 2002. Clay mineral changes in the Morrow experimental plots, University of Illinois. Clays Clay Miner 50: 364-370. 

  31. Whitton JS, Churchman GJ. 1987. Standard methods for mineral analysis of soil survey samples for characterisation and classification in NZ Soil Bureau. Department of Scientific and Industrial Research (DSIR), Lower Hutt. New Zealand Soil Bureau Scientific Report 79. pp 27. 

  32. Yang XM, Drury CF, Reynolds WD, Yang JY. 2016. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions? Sci Rep 6: 27173. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로