$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여
On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning 원문보기

한국농림기상학회지 = Korean Journal of Agricultural and Forest Meteorology, v.23 no.4, 2021년, pp.251 - 267  

박주한 (국가농림기상센터) ,  강민석 (국가농림기상센터) ,  조성식 (국가농림기상센터) ,  손승원 (국가농림기상센터) ,  김종호 (국가농림기상센터) ,  김수진 (국립산림과학원 산림생태연구과) ,  임종환 (국립산림과학원 산림생태연구과) ,  강민구 (국립농업과학원 기후변화평가과) ,  심교문 (국립농업과학원 기후변화평가과)

초록
AI-Helper 아이콘AI-Helper

원격 탐사 기반의 식생지수들은 광합성을 조절하는 식물생리적 특성과 경험적 상관관계를 보이며, 여러공간 규모에서의 총일차생산량(GPP) 추정에 활용되고 있다. 하지만 시간 해상도가 높아질수록 식생지수를 이용한 GPP 추정의 불확실성이 커지는 한계가 존재한다. 또한 식생지수 관련 분석에 주로 사용되는 에디공분산법을 이용하여 추정한 GPP 역시 실제 측정한 순생태계교환량(NEE)을 GPP와 생태계 호흡(RE)으로 배분하는 데 사용하는 방법에 따라 추정값이 달라지는 불확실성이 존재한다. 본 연구에서는 플럭스 타워가 설치된 네 곳의 농림생태계를 대상으로 근지표에서 관측한 식생분광 특성을 이용한 다양한 식생지수를 계산하였고, 이를 다양한 시간 해상도에서 GPP 추정에 적용가능한 지를 분석하였다. 동시에 이를 이용하여 NEE 배분 방법의 불확실성을 평가하였다. 비교에 사용한 정규식생지수, 개량식생지수, 적외반사식생지수(NIRv)에 비해 적외반사식생지수와 광합성유효광(PAR)을 결합한 NIRvP이 식생 및 지형 조건에 의한 공간 이질성으로 인해 관측지에 따라 약간의 차이가 나타났지만, 농경지와 산림에서 모두 30분과 일 단위 시간 해상도에서 GPP와 높은 상관성(r2 = 0.63, 0.68)을 보였다. 또한 기존 KoFlux 표준 NEE 배분방법에 비해 기계학습 기반의 NEE 배분 방법을 적용할 경우, 산림에서 30분 단위의 GPP와 NIRvP 사이의 상관성이 향상되었지만, 일 단위에는 그 차이가 크지 않았다. 하지만 광조건 이외에 다른 요인에 의해 광합성이 제한되는 경우 NIRvP와 GPP 간의 상관성이 떨어져 NIRvP를 이용해 실제 배분 결과를 직접 평가하긴 어려웠으며, 주로 광 조건에 의해 광합성이 제한되는 흐린 날의 경우 NEE 배분 정확도를 평가할 수 있는 가능성이 존재하였다. 그러나 높은 시간해상도의 Vis 기반의 GPP 추정이 의미를 가지려면, VIs와 GPP간의 경험적 관계를 넘어서는 시스템 사고 및 자기-조직화와 관련된 복잡계 기반의 분석 방법이 요구된다.

Abstract AI-Helper 아이콘AI-Helper

Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising f...

Keyword

표/그림 (8)

참고문헌 (51)

  1. Badgley, G., L. D. L. Anderegg, J. A. Berry, and C. B. Field, 2019: Terrestrial gross primary production: Using NIR V to scale from site to globe. Global Change Biology 25(11), 3731-3740. 

  2. Badgley, G., C. B. Field, and J. A. Berry, 2017: Canopy near-infrared reflectance and terrestrial photosynthesis. Science advances 3(3), e1602244. 

  3. Bandopadhyay, S., A. Rastogi, S. Cogliati, U. Rascher, M. Gabka, and R. Juszczak, 2021: Can vegetation indices serve as proxies for potential Sun-Induced Fluorescence (SIF)? A fuzzy simulation approach on airborne imaging spectroscopy data. Remote Sensing 13(13), 2545. 

  4. Camps-Valls, G., M. Campos-Taberner, A. Moreno-Martinez, S. Walther, G. Duveiller, A. Cescatti, M. D. Mahecha, J. Munoz-Mari, F. J. Garcia-Haro, L. Guanter, M. Jung, J. A. Gamon, M. Reichstein, and S. W. Running, 2021: A unified vegetation index for quantifying the terrestrial biosphere. Science Advances 7(9), eabc7447. 

  5. Cho, S., M. Kang, K. Ichii, J. Kim, J. H. Lim, J. H. Chun, C. W. Park, H. S. Kim, S. W. Choi, S. H. Lee, Y. M. Indrawati, and J. Kim, 2021: Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology. Agricultural and Forest Meteorology 311, 108653. 

  6. Dechant, B., Y. Ryu, G. Badgley, P. Kohler, U. Rascher, M. Migliavacca, Y. Zhang, G. Tagliabue, K. Guan, M. Rossini, Y. Goulas, Y. Zeng, C. Frankenberg, and J. A. Berry, 2022: NIRVP: A robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales. Remote Sensing of Environment 268, 112763. 

  7. Dechant, B., Y. Ryu, and M. Kang, 2019: Making full use of hyperspectral data for gross primary productivity estimation with multivariate regression: Mechanistic insights from observations and process-based simulations. Remote Sensing of Environment 234, 111435. 

  8. Fratini, G., A. Ibrom, N. Arriga, G. Burba, and D. Papale, 2012: Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology 165, 53-63. 

  9. Gamon, J. A., C. B. Field, M. L. Goulden, K. L. Griffin, A. E. Hartley, G. Joel, J. Penuelas, and R. Valentini, 1995: Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecological Applications 5(1), 28-41. 

  10. Gu, L., J. Han, J. D. Wood, C. Y. Chang, and Y. Sun, 2019: Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol 223(3), 1179-1191. 

  11. Gu, L. H., E. M. Falge, T. Boden, D. D. Baldocchi, T. A. Black, S. R. Saleska, T. Suni, S. B. Verma, T. Vesala, S. C. Wofsy, and L. K. Xu, 2005: Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology 128(3-4), 179-197. 

  12. Horst, T. W., and D. H. Lenschow, 2009: Attenuation of Scalar Fluxes Measured with Spatially-displaced Sensors. Boundary-Layer Meteorology 130(2), 275-300. 

  13. Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1-2), 195-213. 

  14. Hur, J., K.-M. Shim, B. Lee, Y. Kim, and S. Jo, 2020: Estimation and Comparison of Carbon Uptake in Rice Paddy, Dry Cropland and Grove in South Korea using Eddy Covariance Flux Data. Korean Journal of Environmental Agriculture 39(4), 334-342. 

  15. Ichii, K., M. Ueyama, M. Kondo, N. Saigusa, J. Kim, M. C. Alberto, J. Ardo, E. S. Euskirchen, M. Kang, T. Hirano, J. Joiner, H. Kobayashi, L. B. Marchesini, L. Merbold, A. Miyata, T. M. Saitoh, K. Takagi, A. Varlagin, M. S. Bret-Harte, K. Kitamura, Y. Kosugi, A. Kotani, K. Kumar, S. G. Li, T. Machimura, Y. Matsuura, Y. Mizoguchi, T. Ohta, S. Mukherjee, Y. Yanagi, Y. Yasuda, Y. P. Zhang, and F. H. Zhao, 2017: New data-driven estimation of terrestrial CO 2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research-Biogeosciences 122(4), 767-795. 

  16. Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 273(927), 593-610. 

  17. Jiang, Z. Y., A. R. Huete, K. Didan, and T. Miura, 2008: Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 112(10), 3833-3845. 

  18. Jung, M., M. Reichstein, H. A. Margolis, A. Cescatti, A. D. Richardson, M. A. Arain, A. Arneth, C. Bernhofer, D. Bonal, J. Q. Chen, D. Gianelle, N. Gobron, G. Kiely, W. Kutsch, G. Lasslop, B. E. Law, A. Lindroth, L. Merbold, L. Montagnani, E. J. Moors, D. Papale, M. Sottocornola, F. Vaccari, and C. Williams, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research-Biogeosciences 116(G3). 

  19. Kang, M., J. Kim, S. H. Lee, J. Kim, J. H. Chun, and S. Cho, 2018: Changes and improvements of the standardized eddy covariance data processing in KoFlux. Korean Journal of Agricultural and Forest Meteorology 20(1), 5-17. 

  20. Kang, M., J. Kim, B. Malla Thakuri, J. Chun, and C. Cho, 2019: Modification of the moving point test method for nighttime eddy CO 2 flux filtering on hilly and complex terrains. MethodsX 6, 1207-1217. 

  21. Kim, J., Y. Ryu, C. Jiang, and Y. Hwang, 2019: Continuous observation of vegetation canopy dynamics using an integrated low-cost, near-surface remote sensing system. Agricultural and Forest Meteorology 264, 164-177. 

  22. Kira, O., C. Y. Y. Chang, L. Gu, J. Wen, Z. Hong, and Y. Sun, 2021: Partitioning Net Ecosystem Exchange (NEE) of CO 2 Using Solar-Induced Chlorophyll Fluorescence (SIF). Geophysical Research Letters 48(4), e2020GL091247. 

  23. Li, Z. H., Q. Zhang, J. Li, X. Yang, Y. F. Wu, Z. Y. Zhang, S. H. Wang, H. Z. Wang, and Y. G. Zhang, 2020: Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sensing of Environment 236, 111420. 

  24. Lin, C. J., P. Gentine, C. Frankenberg, S. Zhou, D. Kennedy, and X. Li, 2019: Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes. Agricultural and Forest Meteorology 278, 107642. 

  25. Liu, L., X. Liu, J. Chen, S. Du, Y. Ma, X. Qian, S. Chen, and D. Peng, 2020: Estimating maize GPP using near-infrared radiance of vegetation. Science of Remote Sensing 2, 100009. 

  26. Liu, X., L. Liu, J. Hu, and S. Du, 2017: Modeling the footprint and equivalent radiance transfer path length for tower-based hemispherical observations of chlorophyll fluorescence. Sensors (Basel) 17(5), 1131. 

  27. Lloyd, J., and J. A. Taylor, 1994: On the temperature-dependence of soil respiration. Functional Ecology 8(3), 315-323. 

  28. Magney, T. S., D. R. Bowling, B. A. Logan, K. Grossmann, J. Stutz, P. D. Blanken, S. P. Burns, R. Cheng, M. A. Garcia, P. Khler, S. Lopez, N. C. Parazoo, B. Raczka, D. Schimel, and C. Frankenberg, 2019: Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the Nattional Academy of Sciences 116(24), 11640-11645. 

  29. Malhi, Y., P. Meir, and S. Brown, 2002: Forests, carbon and global climate. Philosophical Transactions of the Royal Society of London. Series A: Math Physical and Engineering Sciences 360(1797), 1567-1591. 

  30. Mauder, M., and T. Foken, 2006: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift 15(6), 597-609. 

  31. McMillen, R. T., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorology 43(3), 231-245. 

  32. Moncrieff, J., R. Clement, J. Finnigan, and T. Meyers, 2004: Averaging, detrending, and filtering of eddy covariance time series. In Handbook of micrometeorology, Springer, Dordrecht, 7-31. 

  33. Norton, A. J., P. J. Rayner, E. N. Koffi, M. Scholze, J. D. Silver, and Y. P. Wang, 2019: Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 16(15), 3069-3093. 

  34. Oikawa, P. Y., G. D. Jenerette, S. H. Knox, C. Sturtevant, J. Verfaillie, I. Dronova, C. M. Poindexter, E. Eichelmann, and D. D. Baldocchi, 2017: Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. Journal of Geophysical Research-Biogeosciences 122(1), 145-167. 

  35. Papaioannou, G., N. Papanikolaou, and D. Retalis, 1993: Relationships of Photosynthetically Active Radiation and Shortwave Irradiance. Theoretical and Applied Climatology 48(1), 23-27. 

  36. Papale, D., M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini, T. Vesala, and D. Yakir, 2006: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4), 571-583. 

  37. Peng, Y., and A. A. Gitelson, 2011: Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agricultural and Forest Meteorology 151(9), 1267-1276. 

  38. Porcar-Castell, A., E. Tyystjarvi, J. Atherton, C. van der Tol, J. Flexas, E. E. Pfundel, J. Moreno, C. Frankenberg, and J. A. Berry, 2014: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany 65(15), 4065-4095. 

  39. R Core Team, 2021: R: A language and environment for statistical computing. R Foundation for Statistical Computing. 

  40. Rahman, M. M., D. W. Lamb, and J. N. Stanley, 2015: The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agricultural and Forest Meteorology 202, 39-43. 

  41. Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11(9), 1424-1439. 

  42. Ryu, Y., D. D. Baldocchi, H. Kobayashi, C. van Ingen, J. Li, T. A. Black, J. Beringer, E. van Gorsel, A. Knohl, B. E. Law, and O. Roupsard, 2011: Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Global Biogeochemical Cycles 25(4). 

  43. Ryu, Y., J. A. Berry, and D. D. Baldocchi, 2019: What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment 223, 95-114. 

  44. Thum, T., S. Zaehle, P. Kohler, T. Aalto, M. Aurela, L. Guanter, P. Kolari, T. Laurila, A. Lohila, F. Magnani, C. Van der Tol, and T. Markkanen, 2017: Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences 14(7), 1969-1987. 

  45. Tramontana, G., M. Migliavacca, M. Jung, M. Reichstein, T. F. Keenan, G. Camps-Valls, J. Ogee, J. Verrelst, and D. Papale, 2020: Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks. Global Change Biology 26(9), 5235- 5253. 

  46. Van Dijk, A., A. Moene, and H. De Bruin, 2004: The principles of surface flux physics: theory, practice and description of the ECPACK library. Meteorology and Air Quality Group, Wageningen University, Wageningen, The Netherlands 99, 525. 

  47. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of Flux Measurements for Density Effects Due to Heat and Water-Vapor Transfer. Quarterly Journal of the Royal Meteorological Society 106(447), 85-100. 

  48. Wesely, M. L., G. W. Thurtell, and C. B. Tanner, 1970: Eddy Correlation Measurements of Sensible Heat Flux near the Earth's Surface. Journal of Applied Meteorology 9(1), 45-50. 

  49. Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99(1), 127-150. 

  50. Wu, G. H., K. Y. Guan, C. Y. Jiang, B. Peng, H. Kimm, M. Chen, X. Yang, S. Wang, A. E. Suyker, C. J. Bernacchi, C. E. Moore, Y. L. Zeng, J. A. Berry, and M. P. Cendrero-Mateo, 2020: Radiance-based NIRv as a proxy for GPP of corn and soybean. Environmental Research Letters 15(3), 034009. 

  51. Yuan, R. M., M. Kang, S. B. Park, J. Hong, D. Rhee, and J. Kim, 2007: The effect of coordinate rotation on the eddy covariance flux estimation in a Hilly KoFlux forest catchment. Korean Journal of Agricultural and Forest Meteorology 9(2), 100-108. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로