최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국농림기상학회지 = Korean Journal of Agricultural and Forest Meteorology, v.23 no.4, 2021년, pp.251 - 267
박주한 (국가농림기상센터) , 강민석 (국가농림기상센터) , 조성식 (국가농림기상센터) , 손승원 (국가농림기상센터) , 김종호 (국가농림기상센터) , 김수진 (국립산림과학원 산림생태연구과) , 임종환 (국립산림과학원 산림생태연구과) , 강민구 (국립농업과학원 기후변화평가과) , 심교문 (국립농업과학원 기후변화평가과)
Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising f...
Badgley, G., L. D. L. Anderegg, J. A. Berry, and C. B. Field, 2019: Terrestrial gross primary production: Using NIR V to scale from site to globe. Global Change Biology 25(11), 3731-3740.
Badgley, G., C. B. Field, and J. A. Berry, 2017: Canopy near-infrared reflectance and terrestrial photosynthesis. Science advances 3(3), e1602244.
Bandopadhyay, S., A. Rastogi, S. Cogliati, U. Rascher, M. Gabka, and R. Juszczak, 2021: Can vegetation indices serve as proxies for potential Sun-Induced Fluorescence (SIF)? A fuzzy simulation approach on airborne imaging spectroscopy data. Remote Sensing 13(13), 2545.
Camps-Valls, G., M. Campos-Taberner, A. Moreno-Martinez, S. Walther, G. Duveiller, A. Cescatti, M. D. Mahecha, J. Munoz-Mari, F. J. Garcia-Haro, L. Guanter, M. Jung, J. A. Gamon, M. Reichstein, and S. W. Running, 2021: A unified vegetation index for quantifying the terrestrial biosphere. Science Advances 7(9), eabc7447.
Cho, S., M. Kang, K. Ichii, J. Kim, J. H. Lim, J. H. Chun, C. W. Park, H. S. Kim, S. W. Choi, S. H. Lee, Y. M. Indrawati, and J. Kim, 2021: Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology. Agricultural and Forest Meteorology 311, 108653.
Dechant, B., Y. Ryu, G. Badgley, P. Kohler, U. Rascher, M. Migliavacca, Y. Zhang, G. Tagliabue, K. Guan, M. Rossini, Y. Goulas, Y. Zeng, C. Frankenberg, and J. A. Berry, 2022: NIRVP: A robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales. Remote Sensing of Environment 268, 112763.
Dechant, B., Y. Ryu, and M. Kang, 2019: Making full use of hyperspectral data for gross primary productivity estimation with multivariate regression: Mechanistic insights from observations and process-based simulations. Remote Sensing of Environment 234, 111435.
Fratini, G., A. Ibrom, N. Arriga, G. Burba, and D. Papale, 2012: Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology 165, 53-63.
Gamon, J. A., C. B. Field, M. L. Goulden, K. L. Griffin, A. E. Hartley, G. Joel, J. Penuelas, and R. Valentini, 1995: Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecological Applications 5(1), 28-41.
Gu, L., J. Han, J. D. Wood, C. Y. Chang, and Y. Sun, 2019: Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol 223(3), 1179-1191.
Gu, L. H., E. M. Falge, T. Boden, D. D. Baldocchi, T. A. Black, S. R. Saleska, T. Suni, S. B. Verma, T. Vesala, S. C. Wofsy, and L. K. Xu, 2005: Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology 128(3-4), 179-197.
Horst, T. W., and D. H. Lenschow, 2009: Attenuation of Scalar Fluxes Measured with Spatially-displaced Sensors. Boundary-Layer Meteorology 130(2), 275-300.
Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1-2), 195-213.
Ichii, K., M. Ueyama, M. Kondo, N. Saigusa, J. Kim, M. C. Alberto, J. Ardo, E. S. Euskirchen, M. Kang, T. Hirano, J. Joiner, H. Kobayashi, L. B. Marchesini, L. Merbold, A. Miyata, T. M. Saitoh, K. Takagi, A. Varlagin, M. S. Bret-Harte, K. Kitamura, Y. Kosugi, A. Kotani, K. Kumar, S. G. Li, T. Machimura, Y. Matsuura, Y. Mizoguchi, T. Ohta, S. Mukherjee, Y. Yanagi, Y. Yasuda, Y. P. Zhang, and F. H. Zhao, 2017: New data-driven estimation of terrestrial CO 2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. Journal of Geophysical Research-Biogeosciences 122(4), 767-795.
Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 273(927), 593-610.
Jiang, Z. Y., A. R. Huete, K. Didan, and T. Miura, 2008: Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 112(10), 3833-3845.
Jung, M., M. Reichstein, H. A. Margolis, A. Cescatti, A. D. Richardson, M. A. Arain, A. Arneth, C. Bernhofer, D. Bonal, J. Q. Chen, D. Gianelle, N. Gobron, G. Kiely, W. Kutsch, G. Lasslop, B. E. Law, A. Lindroth, L. Merbold, L. Montagnani, E. J. Moors, D. Papale, M. Sottocornola, F. Vaccari, and C. Williams, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research-Biogeosciences 116(G3).
Kang, M., J. Kim, B. Malla Thakuri, J. Chun, and C. Cho, 2019: Modification of the moving point test method for nighttime eddy CO 2 flux filtering on hilly and complex terrains. MethodsX 6, 1207-1217.
Kim, J., Y. Ryu, C. Jiang, and Y. Hwang, 2019: Continuous observation of vegetation canopy dynamics using an integrated low-cost, near-surface remote sensing system. Agricultural and Forest Meteorology 264, 164-177.
Kira, O., C. Y. Y. Chang, L. Gu, J. Wen, Z. Hong, and Y. Sun, 2021: Partitioning Net Ecosystem Exchange (NEE) of CO 2 Using Solar-Induced Chlorophyll Fluorescence (SIF). Geophysical Research Letters 48(4), e2020GL091247.
Li, Z. H., Q. Zhang, J. Li, X. Yang, Y. F. Wu, Z. Y. Zhang, S. H. Wang, H. Z. Wang, and Y. G. Zhang, 2020: Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sensing of Environment 236, 111420.
Lin, C. J., P. Gentine, C. Frankenberg, S. Zhou, D. Kennedy, and X. Li, 2019: Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes. Agricultural and Forest Meteorology 278, 107642.
Liu, L., X. Liu, J. Chen, S. Du, Y. Ma, X. Qian, S. Chen, and D. Peng, 2020: Estimating maize GPP using near-infrared radiance of vegetation. Science of Remote Sensing 2, 100009.
Liu, X., L. Liu, J. Hu, and S. Du, 2017: Modeling the footprint and equivalent radiance transfer path length for tower-based hemispherical observations of chlorophyll fluorescence. Sensors (Basel) 17(5), 1131.
Lloyd, J., and J. A. Taylor, 1994: On the temperature-dependence of soil respiration. Functional Ecology 8(3), 315-323.
Magney, T. S., D. R. Bowling, B. A. Logan, K. Grossmann, J. Stutz, P. D. Blanken, S. P. Burns, R. Cheng, M. A. Garcia, P. Khler, S. Lopez, N. C. Parazoo, B. Raczka, D. Schimel, and C. Frankenberg, 2019: Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the Nattional Academy of Sciences 116(24), 11640-11645.
Malhi, Y., P. Meir, and S. Brown, 2002: Forests, carbon and global climate. Philosophical Transactions of the Royal Society of London. Series A: Math Physical and Engineering Sciences 360(1797), 1567-1591.
Mauder, M., and T. Foken, 2006: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift 15(6), 597-609.
McMillen, R. T., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorology 43(3), 231-245.
Moncrieff, J., R. Clement, J. Finnigan, and T. Meyers, 2004: Averaging, detrending, and filtering of eddy covariance time series. In Handbook of micrometeorology, Springer, Dordrecht, 7-31.
Norton, A. J., P. J. Rayner, E. N. Koffi, M. Scholze, J. D. Silver, and Y. P. Wang, 2019: Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 16(15), 3069-3093.
Oikawa, P. Y., G. D. Jenerette, S. H. Knox, C. Sturtevant, J. Verfaillie, I. Dronova, C. M. Poindexter, E. Eichelmann, and D. D. Baldocchi, 2017: Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. Journal of Geophysical Research-Biogeosciences 122(1), 145-167.
Papaioannou, G., N. Papanikolaou, and D. Retalis, 1993: Relationships of Photosynthetically Active Radiation and Shortwave Irradiance. Theoretical and Applied Climatology 48(1), 23-27.
Papale, D., M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini, T. Vesala, and D. Yakir, 2006: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4), 571-583.
Peng, Y., and A. A. Gitelson, 2011: Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agricultural and Forest Meteorology 151(9), 1267-1276.
Porcar-Castell, A., E. Tyystjarvi, J. Atherton, C. van der Tol, J. Flexas, E. E. Pfundel, J. Moreno, C. Frankenberg, and J. A. Berry, 2014: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany 65(15), 4065-4095.
R Core Team, 2021: R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rahman, M. M., D. W. Lamb, and J. N. Stanley, 2015: The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agricultural and Forest Meteorology 202, 39-43.
Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11(9), 1424-1439.
Ryu, Y., D. D. Baldocchi, H. Kobayashi, C. van Ingen, J. Li, T. A. Black, J. Beringer, E. van Gorsel, A. Knohl, B. E. Law, and O. Roupsard, 2011: Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Global Biogeochemical Cycles 25(4).
Ryu, Y., J. A. Berry, and D. D. Baldocchi, 2019: What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment 223, 95-114.
Thum, T., S. Zaehle, P. Kohler, T. Aalto, M. Aurela, L. Guanter, P. Kolari, T. Laurila, A. Lohila, F. Magnani, C. Van der Tol, and T. Markkanen, 2017: Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences 14(7), 1969-1987.
Tramontana, G., M. Migliavacca, M. Jung, M. Reichstein, T. F. Keenan, G. Camps-Valls, J. Ogee, J. Verrelst, and D. Papale, 2020: Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks. Global Change Biology 26(9), 5235- 5253.
Van Dijk, A., A. Moene, and H. De Bruin, 2004: The principles of surface flux physics: theory, practice and description of the ECPACK library. Meteorology and Air Quality Group, Wageningen University, Wageningen, The Netherlands 99, 525.
Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of Flux Measurements for Density Effects Due to Heat and Water-Vapor Transfer. Quarterly Journal of the Royal Meteorological Society 106(447), 85-100.
Wesely, M. L., G. W. Thurtell, and C. B. Tanner, 1970: Eddy Correlation Measurements of Sensible Heat Flux near the Earth's Surface. Journal of Applied Meteorology 9(1), 45-50.
Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99(1), 127-150.
Wu, G. H., K. Y. Guan, C. Y. Jiang, B. Peng, H. Kimm, M. Chen, X. Yang, S. Wang, A. E. Suyker, C. J. Bernacchi, C. E. Moore, Y. L. Zeng, J. A. Berry, and M. P. Cendrero-Mateo, 2020: Radiance-based NIRv as a proxy for GPP of corn and soybean. Environmental Research Letters 15(3), 034009.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.