$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Sequence to Sequence based LSTM (LSTM-s2s)모형을 이용한 댐유입량 예측에 대한 연구
Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.54 no.3, 2021년, pp.157 - 166  

한희찬 (콜로라도 주립 대학교 토목환경공학과) ,  최창현 (KB손해사정 위험관리실) ,  정재원 (인하대학교 수자원시스템연구소) ,  김형수 (인하대학교 사회인프라공학과)

초록
AI-Helper 아이콘AI-Helper

효율적인 댐 운영을 위해서는 높은 신뢰도를 기반으로 하는 유입량 예측이 요구된다. 본 연구에서는 최근 다양한 분야에서 사용되고 있는 데이터 기반의 예측 방법 중 하나인 딥러닝을 댐 유입량 예측에 활용하였다. 그 중 시계열 자료 예측에 높은 성능을 보이는 Sequence-to-Sequence 구조기반의 Long Short-Term Memory 딥러닝 모형(LSTM-s2s)을 이용하여 소양강 댐의 유입량을 예측하였다. 모형의 예측 성능을 평가하기 위해 상관계수, Nash-Sutcliffe 효율계수, 평균편차비율, 그리고 첨두값 오차를 이용하였다. 그 결과, LSTM-s2s 모형은 댐 유입량 예측에 대한 높은 정확도를 보였으며, 단일 유량 수문곡선 기반의 예측 성능에서도 높은 신뢰도를 보였다. 이를 통해 홍수기와 이수기에 수자원 관리를 위한 효율적인 댐 운영에 딥러닝 모형의 적용 가능성을 확인할 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

Forecasting dam inflow based on high reliability is required for efficient dam operation. In this study, deep learning technique, which is one of the data-driven methods and has been used in many fields of research, was manipulated to predict the dam inflow. The Long Short-Term Memory deep learning ...

주제어

표/그림 (6)

참고문헌 (49)

  1. Abrahart, R., Kneale, P.E., and See, L.M. (2004). Neural networks for hydrological modeling. CRC Press, London, UK. 

  2. Adeyemi, O., Grove, I., Peets, S., Domun, Y., and Norton, T. (2018). "Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling." Sensors, Vol. 18, No. 10, pp. 3408-3429. 

  3. Assem, H., Ghariba, S., Makrai, G., Johnston, P., Gill, L., and Pilla, F. (2017). "Urban water flow and water level prediction based on deep learning." Joint European conference on machine learning and knowledge discovery in databases. Springer, Skopje, Macedonia, Vol. 3, pp. 317-329. 

  4. Bae, Y., Kim, J., Wang, W., Yoo, Y., Jung, J., and Kim, H.S. (2019). "Monthly inflow forecasting of Soyang River dam using VARMA and machine learning models." Journal of Climate Research, Vol. 14, No. 3, pp. 183-198. (in Korean) 

  5. Bang, Y., and Kim, S. (2018). "Development of initial design-width formulas for small streams: Case study in Western Gangwon province." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 6, pp. 357-367. (in Korean) 

  6. Bicknell, B.R., Imhoff, J.C., Kittle Jr, J.L., Donigian Jr, A.S., and Johanson, R.C. (1996). Hydrological simulation program-FORTRAN. User's manual for release 11. EPA, U.S. 

  7. Bloschl, G., Hall, J., Viglione, A., Perdigao. R.A., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G.T., Bilibashi, A., Bohac, M., Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G.B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T.R., Kohnova, S., Koskela, J.J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J.L., Sauquet, E., Sraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Zivkovic, N. (2019). "Changing climate both increases and decreases European river floods." Nature, Vol. 573, No. 7772, pp. 108-111. 

  8. Chen, L., Singh, V.P., Lu, W., Zhang, J., Zhou, J., and Guo, S. (2016). "Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation." Journal of Hydrology, Vol. 540, pp. 712-726. 

  9. Chen, P.A., Chang, L.C., and Chang, F.J. (2013). "Reinforced recurrent neural networks for multi-step-ahead flood forecasts." Journal of Hydrology, Vol. 497, pp. 71-79. 

  10. Cho, K., Van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). "On the properties of neural machine translation: Encoder-decoder approaches." arXiv preprint, arXiv:1409.1259v2 [cs.CL]. 

  11. Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014b). "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint, arXiv:1406.1078v3 [cs.CL]. 

  12. Choi, C., Kim, J., Han, H., Han, D., and Kim, H.S. (2020). "Development of water level prediction models using machine learning in wetlands: A case study of Upo Wetland in South Korea." Water, Vol. 12, No. 1, pp. 93-110. 

  13. Devia, G.K., Ganasri, B.P., and Dwarakish, G.S. (2015). "A review on hydrological models." Aquatic Procedia, Vol. 4, pp. 1001-1007. 

  14. Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J., and Jiang, J. (2020). "Comparison of long short term memory networks and the hydrological model in runoff simulation." Water, Vol. 12, No. 1, pp. 175-189. 

  15. Feng, D., Fang, K., and Shen, C. (2020). "Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales." Water Resources Research, Vol. 56, No. 9, e2019WR026793. 

  16. Gholami, V.C.K.W., Chau, K.W., Fadaee, F., Torkaman, J., and Ghaffari, A. (2015). "Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers." Journal of Hydrology, Vol. 529, pp. 1060-1069. 

  17. Ghumman, A.R., Ghazaw, Y.M., Sohail, A.R., and Watanabe, K. (2011). "Runoff forecasting by artificial neural network and conventional model." Alexandria Engineering Journal, Vol. 50, No. 4, pp. 345-350. 

  18. Granata, F., Gargano, R., and De Marinis, G. (2016). "Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA's storm water management model." Water, Vol. 8, No. 3, pp. 69-81. 

  19. Han, J., Lee, D., Kang, B., Chung, S., Jang, W., Lim, K., and Kim, J. (2017). "Potential impacts of future extreme storm events on streamflow and sediment in Soyang-dam watershed." Journal of Korean Society on Water Environment, Vol. 33, No. 2, pp. 160-169. (in Korean) 

  20. Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, No. 11, pp. 1543-1558. 

  21. Jeong, E., Cho, H., and Koo, B. (2018). "Analysis of the impact of droughts on river flows in an agricultural watershed using a semi-distributed watershed model STREAM." Journal of the Korean Society for Marine Environment & Energy, Vol. 21, No. 4, pp. 398-410. (in Korean) 

  22. Jung, S.H., Lee, D.E., and Lee, K.S. (2018). "Prediction of river water level using deep-learning open library." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 1-11. (in Korean) 

  23. Kang, N.R., Noh, H.S., Lee, J.S., Lim, S.H., and Kim, H.S. (2013). "Runoff simulation of an urban drainage system using radar rainfall data." Journal of Wetlands Research, Vol. 15, No. 3, pp. 413-422. (in Korean) 

  24. Kim, B.K., Kim, S.D., Lee, E.T., and Kim, H.S. (2007). "Methodology for estimating ranges of SWAT model parameters: Application to Imha Lake inflow and suspended sediments." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 6B, pp. 661-668. (in Korean) 

  25. Kim, D., Kim, J., Kwak, J., Necesito, I.V., Kim, J., and Kim, H.S. (2020). "Development of water level prediction models using deep neural network in mountain wetlands." Journal of Wetlands Research, Vol. 22, No. 2, pp. 106-112. (in Korean) 

  26. Kim, K.S. (2010). A study on the real time forecasting for monthly inflow Daecheong dam using hydrologic time series analyses. Master Thesis, Seokyeong University, pp. 32-54. (in Korean) 

  27. Kim, Y., Seo, S., and Kim, Y. (2018). "Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds." Journal of Korea Water Resources Association, Vol. 51, No. 8, pp. 677-686. (in Korean) 

  28. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M. (2018). "Rainfall-runoff modelling using long short-term memory (LSTM) networks." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 6005-6022. 

  29. Lee, G., Jung, S., and Lee, D. (2018). "Comparison of physics-based and data-driven models for streamflow simulation of the Mekong River." Journal of Korea Water Resources Association, Vol. 51, No. 6, pp. 503-514. 

  30. Lee, K., Choi, C., Shin, D.H., and Kim, H.S. (2020). "Prediction of heavy rain damage using deep learning." Water, Vol. 12, No. 7, pp. 1942-1959. 

  31. Legates, D.R., and McCabe, G.J. (1999). "Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation." Water Resources Research, Vol. 35, No. 1, pp. 233-241. 

  32. Mok, J.Y., Choi, J.H., and Moon, Y.I. (2020). "Prediction of multipurpose dam inflow using deep learning." Journal of Korea Water Resources Association, Vol. 53, No. 2, pp. 97-105. (in Korean) 

  33. Montanari, A., Rosso, R., and Taqqu, M.S. (1997). "Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation." Water Resources Research, Vol. 33, No. 5, pp. 1035-1044. 

  34. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R. D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. 

  35. Mosavi, A., Ozturk, P., and Chau, K.W. (2018). "Flood prediction using machine learning models: Literature review." Water, Vol. 10, No. 11, p. 1536. 

  36. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute, Temple, TX. 

  37. Noh, H., Lee, J., Kang, N., Lee, D., Kim, H. S., and Kim, S. (2016). "Long-term simulation of daily streamflow using radar rainfall and the SWAT model: A case study of the Gamcheon basin of the Nakdong River, Korea." Advances in Meteorology, Vol. 2016, pp. 431-442. 

  38. Palmer, M., and Ruhi, A. (2019). "Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration." Science, Vol. 365, No. 6459, eaaw2087. 

  39. Park, M.K., Yoon, Y.S., Lee, H.H., and Kim, J.H. (2018). "Application of recurrent neural network for inflow prediction into multi-purpose dam basin." Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1217-1227. (in Korean) 

  40. Riad, S., Mania, J., Bouchaou, L., and Najjar, Y. (2004). "Predicting catchment flow in a semi-arid region via an artificial neural network technique." Hydrological Processes, Vol. 18, No. 13, pp. 2387-2393. 

  41. Shoaib, M., Shamseldin, A.Y., Melville, B.W., and Khan, M.M. (2016). "A comparison between wavelet based static and dynamic neural network approaches for runoff prediction." Journal of Hydrology, Vol. 535, pp. 211-225. 

  42. Sutskever, I., Vinyals, O., and Le, Q.V. (2014). "Sequence to sequence learning with neural networks." arXiv preprint, arXiv:1409.3215v3 [cs.CL]. 

  43. Tian, Y., Xu, Y.P., Yang, Z., Wang, G., and Zhu, Q. (2018). "Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting." Water, Vol. 10, No. 11, pp. 1655. 

  44. Wilcox, B.P., Rawls, W.J., Brakensiek, D.L., and Ross Wight, J. (1990). "Predicting runoff from rangeland catchments: A comparison of two models." Water Resources Research, Vol. 26, No. 10, pp. 2401-2410. 

  45. Xiang, Z., Yan, J., and Demir, I. (2020). "A rainfall-runoff model with LSTM-based sequence-to-sequence learning." Water Resources Research, Vol. 56, No. 1, e2019WR025326. 

  46. Xu, J., Luo, W., and Huang, Y. (2019). "Dadu River runoff forecasting via Seq2Seq." Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science, Wuhan, China, pp. 494-498. 

  47. Yan, J., Jin, J., Chen, F., Yu, G., Yin, H., and Wang, W. (2018). "Urban flash flood forecast using support vector machine and numerical simulation." Journal of Hydroinformatics, Vol. 20, No. 1, pp. 221-231. 

  48. Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J. (2018). "Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas." Journal of Hydrology, Vol. 561, pp. 918-929. 

  49. Zhang, Q., Xiao, M., Singh, V.P., and Li, J. (2012). "Regionalization and spatial changing properties of droughts across the Pearl River basin, China." Journal of Hydrology, Vol. 472, pp. 355-366. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로