$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

온도 차이에 따른 배추좀나방 유충 지방체에서 발현되는 G 단백질 연관 수용체의 동정
Identification of G Protein Coupled Receptors Expressed in Fat Body of Plutella Xylostella in Different Temperature Conditions 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.40 no.1, 2021년, pp.1 - 12  

김광호 (농촌진흥청 국립농업과학원 농산물안전성부 작물보호과) ,  이대원 (경성대학교 생명보건대학 바이오안전학과)

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: G protein-coupled receptors (GPCRs) are widely distributed in various organisms. Insect GPCRs shown as in vertebrate GPCRs are membrane receptors that coordinate or involve in various physiological processes such as learning/memory, development, locomotion, circadian rhythm, reproduction...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • GPCR 은 새로운 살충표적 개발을 위한 잠재적 표적들 중 하나로 인식되고 있다[16]. 본 연구는 다른 온도조건 아래, 배추좀나방의 생리적 대사중심인 지방체에서 GPCR 발현 차이를 확인하기 위해, 전사체 분석을 통해서 GPCR을 동정하고, 차등발현 유전자 발현양을 추정하였다. 전사체 분석을 통해 Family A, B, F에 속하는 다양한 GPCR이 지방체에서 발현되었다.
본문요약 정보가 도움이 되었나요?

참고문헌 (85)

  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Roger AH et al. (2000) The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195. https://doi.org/10.1126/science.287.5461.2185. 

  2. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JC et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298(5591), 129-149. https://doi.org/10.1126/science.1076181. 

  3. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Tamashita H et al. (2004) The genome sequence of silkworm, Bombyx mori. DNA Research, 11(1), 27-35. https://doi.org/10.1093/dnares/11.1.27. 

  4. Hummon AB, Richmond TA, Verleyen P, Barrerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriquez-Zas SL, Schoofs L et al. (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science, 314(5799), 647-649. https://doi.org/10.1126/science.1124128. 

  5. Schoofs L, De Loof A, Van Hiel MB (2017) Neuropeptides as regulators of behavior in insects. Annual Review of Entomology, 62, 35-52. https://doi.org/10.1146/annurev-ento-031616-035500. 

  6. Nassel DR, Winther AM (2010) Drosophila neuropeptides in regulation of physiology and behavior. Progress in Neurobiology, 92(1), 42-104. https://doi.org/10.1016/j.pneurobio.2010.04.010. 

  7. Hanlon CD, Andrew DJ (2015) Outside-in signaling-a brief review of GPCR signaling with a focus on the Drosophila GPCR family. Journal of Cell Science, 128(19), 3533-3542. https://doi.org/10.1242/jcs.175158. 

  8. Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, Sattelle DB, De La Fuente J, Ribeiro JM et al. (2016) Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 7(1), 1-13. https://doi.org/10.1038/ncomms10507. 

  9. Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP, De Graaf DC, Debyser G, Deng J et al. (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 15(1), 86. https://doi.org/10.1186/1471-2164-15-86. 

  10. Xu G, Gu GX, Teng ZW, Wu SF, Huang J, Song QS, Ye GY, Fang Q (2016) Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis. Scientific Reports, 6, 28976. https://doi.org/10.1038/srep28976. 

  11. Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Molecular Biotechnology, 39(3), 239-264. https://doi.org/10.1007/s12033-008-9031-1. 

  12. Talekar N, Shelton A (1993) Biology, ecology, andmanagement of the diamondback moth. Annual Review of Entomology, 38(1), 275-301. https://doi.org/10.1146/annurev.en.38.010193.001423. 

  13. Cho JM, Kim KJ, Kim SM, Han DS, Hur JH (2001) Diamondback moth (Plutella xylostella L.) resistance to organophosphorus and carbamate insecticides in Kangwon alpine vegetable crop lands. The Korean Journal of Pesticide Science, 5(1), 30-35. 

  14. Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, Coetzee M, Simard F, Roch DK et al. (2016) Averting a malaria disaster: will insecticide resistance derail malaria control? The Lancet, 387(10029), 1785-1788. https://doi.org/10.1016/s0140-6736(15)00417-1. 

  15. Sparks TC, Lorsbach BA (2017) Perspectives on the agrochemical industry and agrochemical discovery. Pest Management Science, 73(4), 672-677. https://doi.org/10.1002/ps.4457. 

  16. Audsley N, Down RE (2015) G protein coupled receptors as targets for next generation pesticides. Insect Biochemistry and Molecular Biology, 67, 27-37. https://doi.org/10.1016/j.ibmb.2015.07.014. 

  17. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170. 

  18. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8(8), 1494-1512. https://doi.org/10.1038/nprot.2013.084. 

  19. Kim KH, Lee DW (2018) Analysis of gene expression in larval fat body of Plutella xylostella under high temperature. Korean Journal of Environmental Agriculture, 37(4), 324-332. https://doi.org/10.5338/kjea.2018.37.4.43. 

  20. Meyer JM, Ejendal KF, Avramova LV, Garland-Kuntz EE, Giraldo-Calderon GI, Brust TF, Watts VJ, Hill CA (2012) A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1)-like dopamine receptors. PLoS Neglected Tropical Diseases, 6(1), e1478. https://doi.org/10.1371/journal.pntd.0001478. 

  21. Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annual Review of Entomology, 50, 447-477. https://doi.org/10.1146/annurev.ento.50.071803.130404. 

  22. Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progress in Neurobiology, 80(1), 1-19. https://doi.org/10.1016/j.pneurobio.2006.07.005. 

  23. Fuchs S, Rende E, Crisanti A, Nolan T (2014) Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival. Scientific Reports, 4, 5526. https://doi.org/10.1038/srep05526. 

  24. Kamhi JF, Arganda S, Moreau CS, Traniello JFA (2017) Origins of aminergic regulation of behavior in complex insect social systems. Frontiers in Systems Neuroscience, 11, 74. https://doi.org/10.3389/fnsys.2017.00074. 

  25. Huser A, Eschment M, Gullu N, Collins KAN, Bopple K, Pankevych L, Rolsing E, Thum AS (2017) Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One, 12(8), e0181865. https://doi.org/10.1371/journal.pone.0181865. 

  26. Kinney MP, Panting ND, Clark TM (2014) Modulation of appetite and feeding behavior of the larval mosquito Aedes aegypti by the serotonin-selective reuptake inhibitor paroxetine: shifts between distinct feeding modes and the influence of feeding status. Journal of Experimental Biology, 217(6), 935-943. https://doi.org/10.1242/jeb.094904. 

  27. Thamm M, Balfanz S, Scheiner R, Baumann A, Blenau W (2010) Characterization of the 5-HT 1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cellular and Molecular Life Sciences, 67(14), 2467-2479. https://doi.org/10.1007/s00018-010-0350-6. 

  28. Balkwill F (2004) Cancer and the chemokine network. Nature Reviews Cancer, 4(7), 540-550. https://doi.org/10.1038/nrc1388. 

  29. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity, 12(2), 121-127. https://doi.org/10.1016/s1074-7613(00)80165-x. 

  30. Moschovakis GL, Bubke A, Friedrichsen M, Ristenpart J, Back JW, Falk E, Kremmer CS, Forster R (2019) The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cellular & Molecular Immunology, 16(10), 791-799. https://doi.org/10.1038/s41423-018-0056-5. 

  31. Hauser F, Grimmelikhuijzen CJP (2014) Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. General and Comparative Endocrinology, 209, 35-49. https://doi.org/10.1016/j.ygcen.2014.07.009. 

  32. Tian S, Zandawala M, Beets I, Baytemur E, Slade SE, Scrivens JH, Elphick MR (2016) Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways. Scientific Reports, 6(1), 28788. https://doi.org/10.1038/srep28788. 

  33. Veenstra JA (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Letters, 250(2), 231-234. https://doi.org/10.1016/0014-5793(89)80727-6. 

  34. Oryan A, Wahedi A, Paluzzi JPV (2018) Functional characterization and quantitative expression analysis of two GnRH-related peptide receptors in the mosquito, Aedes aegypti. Biochemical and Biophysical Research Communications, 497(2), 550-557. https://doi.org/10.1016/j.bbrc.2018.02.088. 

  35. Marchal E, Schellens S, Monjon E, Bruyninckx E, Marco HG, Gade G, Vanden Broeck J, Verlinden H (2018) Analysis of peptide ligand specificity of different insect adipokinetic hormone receptors. International Journal of Molecular Sciences, 19(2), 542. https://doi.org/10.3390/ijms19020542. 

  36. Schwabe T, Bainton RJ, Fetter RD, Heberlein U, Gaul U (2005) GPCR signaling is required for blood-brain barrier formation in Drosophila. Cell, 123(1), 133-144. https://doi.org/10.1016/j.cell.2005.08.037. 

  37. Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P (1999) Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides, 20(9), 1035-1042. https://doi.org/10.1016/s0196-9781(99)00097-2. 

  38. Nassel DR, Wegener C (2011) A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides, 32(6), 1335-1355. https://doi.org/10.1016/j.peptides.2011.03.013. 

  39. Lingo PR, Zhao Z, Shen P (2007) Co-regulation of cold-resistant food acquisition by insulin- and neuropeptide Y-like systems in Drosophila melanogaster. Neuroscience, 148(2), 371-374. https://doi.org/10.1016/j.neuroscience.2007.06.010. 

  40. Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S (2009) A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell, 139(2), 416-427. https://doi.org/10.1016/j.cell.2009.08.035. 

  41. Xu J, Li M, Shen P (2010) A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in Drosophila. Journal of Neuroscience, 30(7), 2504-2512. https://doi.org/10.1523/jneurosci.3262-09.2010. 

  42. Hermann C, Saccon R, Senthilan PR, Domnik L, Dircksen H, Yoshii T, Helfrich-Forste C (2013) The circadian clock network in the brain of different Drosophila species. Journal of Comparative Neurology, 521(2), 367-388. https://doi.org/10.1002/cne.23178. 

  43. Ament SA, Velarde RA, Kolodkin MH, Moyse D, Robinson GE (2011) Neuropeptide Y-like signalling and nutritionally mediated gene expression and behaviour in the honey bee. Insect Molecular Biology, 20(3), 335-345. https://doi.org/10.1111/j.1365-2583.2011.01068. 

  44. Huang Y, Crim JW, Nuss AB, Brown MR (2011) Neuropeptide F and the corn earworm, Helicoverpa zea: a midgut peptide revisited. Peptides, 32(3), 483-492. https://doi.org/10.1016/j.peptides.2010.09.014. 

  45. Setzu M, Biolchini M, Lilliu A, Manca M, Muroni P, Poddighe S, Bass C, Angioy AM, Nichols R (2012) Neuropeptide F peptides act through unique signaling pathways to affect cardiac activity. Peptides, 33(2), 230-239. https://doi.org/10.1016/j.peptides.2012.01.005. 

  46. Garczynski SF, Crim JW, Brown MR (2005) Characterization of neuropeptide F and its receptor from the African malaria mosquito, Anopheles gambiae. Peptides, 26(1), 99-107. https://doi.org/10.1016/j.peptides.2004.07.014. 

  47. Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J et al. (2008) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Frontiers in Neuroendocrinology, 29(1), 142-165. https://doi.org/10.1016/j.yfrne.2007.10.003. 

  48. Yamanaka N, Yamamoto S, Zitnan D, Watanabe K, Kawada T, Satake H, Kaneko Y, Hiruma K, Tanaka Y et al. (2008) Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS One, 3(8), e3048. https://doi.org/10.1371/journal.pone.0003048. 

  49. Fan Y, Sun P, Wang Y, He X, Deng X, Chen X, Zhang G, Chen X, Zhouet N (2010) The G protein-coupled receptors in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 40(8), 581-591. https://doi.org/10.1016/j.ibmb.2010.05.005. 

  50. Brody T, Cravchik A (2000) Drosophila melanogaster G protein-coupled receptors. The Journal of Cell Biology, 150(2), F83-F88. https://doi.org/10.1083/jcb.150.2.F83. 

  51. Liu YJ, Yan S, Shen ZJ, Li Z, Zhang XF, Liu XM, Zhang QW, Liu XX (2018) The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera: Noctuidae): evidence for visual function of opsin in phototaxis. Insect Biochemistry and Molecular Biology, 96, 27-35. https://doi.org/10.1016/j.ibmb.2018.03.006. 

  52. Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature, 411(6835), 302-305. https://doi.org/10.1038/35077075. 

  53. Tancharoen S, Sarker KP, Imamura T, Biswas KK, Matsushita K, Tatsuyama S, Travis J, Porempa J, Torii M et al. (2005) Neuropeptide release from dental pulp cells by RgpB via proteinase-activated receptor-2 signaling. The Journal of Immunology, 174(9), 5796-5804. https://doi.org/10.4049/jimmunol.174.9.5796. 

  54. Clynen E, Husson SJ, Schoofs L (2009) Identification of new members of the (short) neuropeptide F family in locusts and Caenorhabditis elegans. Annals of The New York Academy of Sciences, 1163(1), 60-74. https://doi.org/10.1111/j.1749-6632.2008.03624. 

  55. Garczynski SF, Brown MR, Crim JW (2006) Structural studies of Drosophila short neuropeptide F: occurrence and receptor binding activity. Peptides, 27(3), 575-582. https://doi.org/10.1016/j.peptides.2005.06.029. 

  56. Dillen S, Verdonck R, Zels S, Van Wielendaele P, Vanden Broeck J (2014) Identification of the short neuropeptide F precursor in the desert locust: evidence for an inhibitory role of sNPF in the control of feeding. Peptides, 53, 134-139. https://doi.org/10.1016/j.peptides.2013.09.018. 

  57. Wu SF, Yu HY, Jiang TT, Gao CF, Shen JL (2015) Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Insect Molecular Biology, 24(4), 442-453. https://doi.org/10.1111/imb.12171. 

  58. Kubli E, Bopp D (2012) Sexual behavior: how sex peptide flips the postmating switch of female flies. Current Biology, 22(13), R520-R522. https://doi.org/10.1016/j.cub.2012.04.058. 

  59. Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell, 54(3), 291-298. https://doi.org/10.1016/0092-8674(88)90192-4. 

  60. Isaac RE, Li C, Leedale AE, Shirras AD (2010) Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proceedings of the Royal Society B: Biological Sciences, 277(1678), 65-70. https://doi.org/10.1098/rspb.2009.1236. 

  61. Domanitskaya EV, Liu H, Chen S, Kubli E (2007) The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. The FEBS Journal, 274(21), 5659-5668. https://doi.org/10.1111/j.1742-4658.2007.06088. 

  62. Fryxell KJ, Meyerowitz EM (1991) The evolution of rhodopsins and neurotransmitter receptors. Journal of Molecular Evolution, 33(4), 367-378. https://doi.org/10.1007/bf02102867. 

  63. Li XJ, Wolfgang W, Wu YN, North RA, Forte M (1991) Cloning, heterologous expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. The EMBO Journal, 10(11), 3221-3229. https://doi.org/10.1002/j.1460-2075.1991.tb04885.x. 

  64. Altstein M, Nassel DR (2010) Neuropeptide signaling in insects. Neuropeptide Systems as Targets for Parasite and Pest Control, 692, 155-165. https://doi.org/10.1007/978-1-4419-6902-6_8. 

  65. He X, Zang J, Li X, Shao J, Yang H, Yang J, Huang H, Chen L, Shi L, Zhu C, Zhang G, Zhou N (2014) Activation of BNGR-A24 by direct interaction with tachykinin-related peptides from the silkworm Bombyx mori leads to the G(q)- and G(s)-coupled signaling cascades. Biochemistry, 53(42), 6667-6678. https://doi.org/10.1021/bi5007207. 

  66. Gui S, Jiang H, Xu L, Pei Y, Liu X, Smagghea G, Wang J (2017) Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Biochemistry and Molecular Biology, 80, 71-78. https://doi.org/10.1016/j.ibmb.2016.12.002. 

  67. West AP, Llamas LL, Snow PM, Benzer S, Bjorkman PJ (2001) Crystal structure of the ectodomain of Methuselah, a Drosophila G protein-coupled receptor associated with extended lifespan. Proceedings of the National Academy of Sciences, 98(7), 3744-3749. https://doi.org/10.1073/pnas.051625298. 

  68. Patel MV, Hallal DA, Jones JW, Bronner DN, Zein R, Caravas J, Husain Z, Friedrich M, Vanberkum MFA (2012) Dramatic expansion and developmental expression diversification of the Methuselah gene family during recent Drosophila evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318(5), 368-387. https://doi.org/10.1002/jez.b.22453. 

  69. Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila Mutant methuselah. Science, 282(5390), 943-946. https://doi.org/10.1126/science.282.5390.943. 

  70. Kidd T, Abu-Shumays R, Katzen A, Sisson JC, Jimenez G, Pinchin S, Sullivan W, Ish-Horowicz D (2005) The ε -subunit of mitochondrial ATP synthase is required for normal spindle orientation during the Drosophila embryonic divisions. Genetics, 170(2), 697-708. https://doi.org/10.1534/genetics.104.037648. 

  71. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM et al. (2002) G protein-coupled receptors in Anopheles gambiae. Science, 298, 176-178. https://doi.org/10.1126/science.1076196. 

  72. Li C, Zhang Y, Yun X, Wang Y, Sang M, Liu X, Hu X, Li B (2014) Methuselah-like genes affect development, stress resistance, lifespan and reproduction in Tribolium castaneum. Insect Molecular Biology, 23(5), 587-597. https://doi.org/10.1111/imb.12107. 

  73. Zhang Z, Wang H, Hao C, Zhang W, Yang M, Chang Y, Li M (2016) Identification, characterization and expression of methuselah-like genes in Dastarcus helophoroides (Coleoptera: Bothrideridae). Genes, 7(10), 91. https://doi.org/10.3390/genes7100091. 

  74. Regard JB, Sato IT, Coughlin SR (2009) Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3), 561-571. https://doi.org/10.1016/j.cell.2008.08.040. 

  75. Sahbaz BD, Iyison NB (2019) Prediction and expression analysis of G protein-coupled receptors in the laboratory stick insect, Carausius morosus. Turkish Journal of Biology, 43(1), 77-88. https://doi.org/10.3906/biy-1809-27. 

  76. Coast GM, Orchard I, Phillips JE, Schooley DA (2002) Insect diuretic and antidiuretic hormones. Advances in Insect Physiology, 29, 279-409. https://doi.org/10.1016/S0065-2806(02)29004-9. 

  77. Furuya K, Milchak RJ, Schegg KM, Zhang J, Tobe SS, Coast GM, Schooley DA (2000) Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proceedings of the National Academy of Sciences, 97(12), 6469-6474. https://doi.org/10.1073/pnas.97.12.6469. 

  78. Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH (2005) A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. Journal of Experimental Biology, 208(7), 1239-1246. https://doi.org/10.1242/jeb.01529. 

  79. Zandawala M, Li S, Hauser F, Grimmelikhuijzen CJ, Orchard I (2013) Isolation and functional characterization of calcitonin-like diuretic hormone receptors in Rhodnius prolixus. PLoS One, 8(11), e82466. https://doi.org/10.1371/journal.pone.0082466. 

  80. Johnson EC, Bohn LM, Taghert PH (2004) Drosophila CG8422 encodes a functional diuretic hormone receptor. Journal of Experimental Biology, 207(5), 743-748. https://doi.org/10.1242/jeb.00818. 

  81. Apone F, Ruggiero A, Tortora A, Tito A, Grimaldi MR, Arciello S, Andrenacci D, Di Lelio I, Colucci G (2014) Targeting the diuretic hormone receptor to control the cotton leafworm, Spodoptera littoralis. Journal of Insect Science, 14(1), 87. https://doi.org/10.1093/jis/14.1.87. 

  82. Boutros M, Mihaly J, Bouwmeester T, Mlodzik M (2000) Signaling specificity by Frizzled receptors in Drosophila. Science, 288(5472), 1825-1828. https://doi.org/10.1126/science.288.5472.1825. 

  83. Malbon CC (2004) Frizzleds: new members of the superfamily of G-protein-coupled receptors. Frontiers in Bioscience: A Journal and Virtual Library, 9, 1048-1058. https://doi.org/10.2741/1308. 

  84. Organisti C, Hein I, Grunwald Kadow IC, Suzuki T (2015) Flamingo, a seven-pass transmembrane cadherin, cooperates with Netrin/Frazzled in Drosophila midline guidance. Genes to Cells, 20(1), 50-67. https://doi.org/10.1111/gtc.12202. 

  85. Wasserscheid I, Thomas U, Knust E (2007) Isoform-specific interaction of Flamingo/Starry Night with excess Bazooka affects planar cell polarity in the Drosophila wing. Developmental Dynamics, 236(4), 1064-1071. https://doi.org/10.1002/dvdy.21089. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로