$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 동아시아 대도시에 영향을 미치는 온대저기압의 특성 및 강수 영향 비교: 서울, 베이징, 도쿄
Synoptic Structures and Precipitation Impact of Extratropical Cyclones Influencing on East Asia Megacities: Seoul, Beijing, Tokyo 원문보기

대기 = Atmosphere, v.31 no.1, 2021년, pp.45 - 60  

김동현 (서울대학교 지구환경과학부) ,  이재연 (서울대학교 지구환경과학부) ,  강준석 (서울대학교 지구환경과학부) ,  손석우 (서울대학교 지구환경과학부)

Abstract AI-Helper 아이콘AI-Helper

The synoptic structures and precipitation impact of extratropical cyclones (ETCs) influencing on the three adjacent megacities in East Asia, i.e., Beijing (Beijing ETCs), Seoul (Seoul ETCs) and Tokyo (Tokyo ETCs), are analyzed using ERA-interim reanalysis data from 1979 to 2018. Individual ETC track...

주제어

표/그림 (9)

참고문헌 (50)

  1. Adachi, S., and F. Kimura, 2007: A 36-year climatology of surface cyclogenesis in East Asia using high-resolution reanalysis data. SOLA, 3, 113-116, doi:10.2151/sola.2007-029. 

  2. Agel, L., M. Barlow, J.-H. Qian, F. Colby, E. Douglas, and T. Eichler, 2015: Climatology of daily precipitation and extreme precipitation events in the Northeast United States. J. Hydrometeor., 16, 2537-2557, doi:10.1175/JHM-D-14-0147.1. 

  3. Agel, L., M. Barlow, S. B. Feldstein, and W. J. Gutowski Jr., 2018: Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast. Clim. Dyn., 50, 1819-1839, doi:10.1007/s00382-017-3724-8. 

  4. Agel, L., M. Barlow, F. Colby, H. Binder, J. L. Catto, A. Hoell, and J. Cohen, 2019: Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Clim. Dyn., 52, 1739-1760, doi:10.1007/s00382-018-4223-2. 

  5. Ahmadi-Givi. F., 2002: A review of the role of latent heat release in extratropical cyclones within potential vorticity framework. J. Earth Space Phys., 28, 7-20. 

  6. Ahmadi-Givi. F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Q. J. R. Meteorol. Soc., 130, 295-323, doi:10.1256/qj.02.226. 

  7. Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717-725, doi:10.1175/2007JAMC1689.1. 

  8. Booth, J. F., H. E. Rieder, D. E. Lee, and Y. Kushnir, 2015: The paths of extratropical cyclones associated with wintertime high-wind events in the Northeastern United States. J. Appl. Meteor. Climatol., 54, 1871-1885, doi:10.1175/JAMC-D-14-0320.1. 

  9. Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163-2183, doi:10.1175/1520-0442(2002)015 2.0.CO;2. 

  10. Chen, L., B. Tan, N. G. Kvamsto, and O. M. Johannessen, 2014: Wintertime cyclone/anticyclone activity over China and its relation to upper tropospheric jets. Tellus A, 66, 21889, doi:10.3402/tellusa.v66.21889. 

  11. Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1991: Synoptic climatology of cyclogenesis over East Asia, 1958-1987. Mon. Wea. Rev., 119, 1407-1418, doi:10.1175/1520-0493(1991)119 2.0.CO;2. 

  12. Chung, Y., K. D. Hage, and E. R. Reinelt, 1976: On lee cyclogenesis and airflow in the Canadian Rocky Mountains and the East Asian Mountains. Mon. Wea. Rev., 104, 879-891, doi:10.1175/1520-0493(1976)104 2.0.CO;2. 

  13. Dacre, H. F., O. Martinez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm con-veyor belt airflows. J. Hydrometeor., 20, 1183-1196, doi:10.1175/JHM-D-18-0175.1. 

  14. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828. 

  15. Dowdy, A. J., and J. L. Catto, 2017: Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep., 7, 40359, doi:10.1038/srep40359. 

  16. Eiras-Barca, J., A. M. Ramos, J. G. Pinto, R. M. Trigo, M. L. R. Liberato, and G. Miguez-Macho, 2018: The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst. Dynam., 9, 91-102, doi:10.5194/esd-9-91-2018. 

  17. Guo, Y., T. Shinoda, B. Guan, D. E. Waliser, and E. K. M. Chang, 2020: Statistical relationship between atmospheric rivers and extratropical cyclones and anticyclones. J. Climate, 33, 7817-7834, doi:10.1175/JCLI-D-19-0126.1. 

  18. Gyakum, J. R., and R. E. Danielson, 2000: Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the Western North Pacific. Mon. Wea. Rev., 128, 851-863, doi:10.1175/1520-0493(2000)128 2.0.CO;2. 

  19. Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL053866. 

  20. Heo, K.-Y., J.-S. Shim, J.-I. Kwon, J.-Y. Jeong, K.-S. Park, and J.-W. Choi, 2013: Abnormal storm waves around the Korean Peninsula: A case study of an extratropical explosive cyclone over East Sea. J. Coastal Res., 65, 720-725, doi:10.2112/SI65-122.1. 

  21. Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573-2586, doi:10.1175/1520-0493(1994)122 2.0.CO;2. 

  22. Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 3458-3465, doi:10.1175/1520-0493(1995)123 2.0.CO;2. 

  23. Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 1362-1373, doi:10.1175/1520-0493(1999)127 2.0.CO;2. 

  24. Hoskins, B. J., and K. I. Hodges, 2002: New Perspectives on the Northern Hemisphere Winter Storm Tracks. J. Atmos. Sci., 59, 1041-1061, doi:10.1175/1520-0469(2002)059 2.0.CO;2. 

  25. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc., 111, 877-946, doi:10.1002/qj.49711147002. 

  26. Kamae, Y., W. Mei, and S.-P. Xie, 2017: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan Ser.II, 95, 411-431, doi:10.2151/jmsj.2017-027. 

  27. Kang, J. M., J. Lee, S.-W. Son, J. Kim, and D. Chen, 2020: The rapid intensification of East Asian cyclones around the Korean Peninsula and their surface impacts. J. Geophys. Res. Atmos., 125, e2019JD031632, doi:10.1029/2019JD031632. 

  28. Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 59-74, doi:10.1175/1520-0493(2002)130 2.0.CO;2. 

  29. Leckebusch, G. C., and U. Ulbrich, 2004: On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob. Planet. Change, 44, 181-193, doi:10.1016/j.gloplacha.2004.06.011. 

  30. Lee, T. Y., and Y. H. Kim, 2007: Heavy precipitation systems over the Korean peninsula and their classification. J. Korean Meteor. Soc., 43, 367-396. 

  31. Lee, J., S.-W. Son, H.-O. Cho, J. Kim, D.-H. Cha, J. R. Gyakum, and D. Chen, 2019: Extratropical cyclones over East Asia: climatology, seasonal cycle, and long-term trend. Clim. Dyn., 54, 1131-1144, doi:10.1007/s00382-019-05048-w. 

  32. Li, W.-L., R.-D. Xia, J.-H. Sun, S.-M. Fu, L.-Z. Jiang, B.-F. Chen, and F.-Y. Tian, 2019: Layer-wise formation mechanisms of an entire-troposphere-thick extratropical cyclone that induces a record-breaking catastrophic rainstorm in Beijing. J. Geophys. Res. Atmos., 124, 10567-10591, doi:10.1029/2019JD030868. 

  33. Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979-2010). Part I: climatology and potential vorticity evolution. J. Climate, 27, 3-26, doi:10.1175/JCLI-D-12-00720.1. 

  34. Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 6770-6780, doi:10.1175/JCLI-D-11-00705.1. 

  35. Pfahl, S., and M. Sprenger, 2016: On the relationship between extratropical cyclone precipitation and intensity. Geophys. Res. Lett., 43, 1752-1758, doi:10.1002/2016GL068018. 

  36. Plant, R. S., G. C. Craig, and S. L. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Q. J. R. Meteorol. Soc., 129, 2989-3012, doi:10.1256/qj.02.174. 

  37. Ren, X., X. Yang, and C. Chu, 2010: Seasonal variations of the synoptic-scale transient eddy activity and polar front jet over East Asia. J. Climate, 23, 3222-3233, doi:10.1175/2009JCLI3225.1. 

  38. Rosenfeld, A., and A. C. Kak, 1976: Digital picture processing. Academic Press, 490 pp. 

  39. Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595-612, doi:10.1175/1520-0434(1997)012 2.0.CO;2. 

  40. Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849-874, doi:10.1175/1520-0493(1996)124 2.0.CO;2. 

  41. Takahashi, H. G., and T. Yamazaki, 2020: Impact of sea surface temperature near Japan on the extra-tropical cyclone induced heavy snowfall in Tokyo by a regional atmospheric model. SOLA, 16, 206-211, doi:10.2151/sola.2020-035. 

  42. Takano, I., 2002: Analysis of an intense winter extratropical cyclone that advanced along the south coast of Japan. J. Meteor. Soc. Japan Ser.II, 80, 669-695, doi:10.2151/jmsj.80.669. 

  43. Whittaker, L. M., and L. H. Horn, 1984: Northern Hemisphere extratropical cyclone activity for four mid-season months. Int. J. Climatol., 4, 297-310, doi:10.1002/joc.3370040307. 

  44. Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 2234-2250, doi:10.1175/JAS-D-12-0226.1. 

  45. Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607-626, doi:10.1175/JHM583.1. 

  46. Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the Northwestern Pacific region. Mon. Wea. Rev., 132, 1121-1142, doi:10.1175/1520-0493(2004)132 2.0.CO;2. 

  47. Zhang, Y., Y. Ding, and Q. Li, 2012: A climatology of extratropical cyclones over East Asia during 1958-2001. Acta. Meteorol. Sin., 26, 261-277, doi:10.1007/s13351-012-0301-2. 

  48. Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 1814-1823, doi:10.1029/2018GL079071. 

  49. Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 1999-2002, doi:10.1029/94GL01710. 

  50. Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725-735, doi:10.1175/1520-0493(1998)126 2.0.CO;2. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로