$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 특별교통수단 장기대기수요에 대한 사회 연결망 분석
Social Network Analysis of Long-term Standby Demand for Special Transportation 원문보기

디지털융복합연구 = Journal of digital convergence, v.19 no.5, 2021년, pp.93 - 103  

박소연 (영남대학교 정보통신공학과) ,  진민하 (한동대학교 경영학) ,  강원식 (경북대학교 정치외교학과) ,  박대영 (영남대학교 경영학과) ,  김건욱 (대구디지털산업진흥원 빅데이터활용센터)

초록
AI-Helper 아이콘AI-Helper

교통약자의 이동편의 증진을 위해 도입된 특별교통수단은 2016년 법적 기준대수 충족 등 양적인 발전을 이루었으나, 대기시간의 50% 이상이 30분을 초과하는 등 질적인 측면에서 발전이 부족한 실정이다. 이에 본 연구에서는 특별교통수단의 운영 효율화를 위하여 대구광역시 특별교통수단 승하차 이력 자료 중 대기시간이 상위 25%에 해당하는 장기대기통행을 추출하여 공간자기상관 분석과 사회 연결망 분석을 수행하였다. 분석 결과 특별교통수단 이용자들의 평균 대기시간과 공간과의 상관관계는 높은 것으로 나타났으며, 일부 도서산간 지역에서 개선지역을 도출하였다. 내향연결 중심성 분석 결과 첨두시간대는 종합병원, 복지관 방문이 주를 이루는 반면, 비첨두시간대는 터미널/역사, 주거지 인근의 의원 방문의 장기대기수요가 높게 나타났다. 외향 연결 중심성 분석은 첨두시간대와 비첨두시간대 모두 주거지 기반의 수요가 높게 나타났다. 본 연구의 결과는 특별교통수단 운영의 질적 개선과 교통약자 이동권 개선에 기여할 것으로 판단되며, 연구의 학술적 함의와 한계점 또한 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

The special means of transportation introduced to improve the mobility of the transportation vulnerable met the number of legal standards in 2016, but lack of development in terms of quality, such as the existence of long waiting times. In order to streamline the operation of special means of transp...

Keyword

표/그림 (14)

참고문헌 (22)

  1. Third transportation convenience improvement plan for the weak. (2016.12). Ministry of Land, Infrastructure and Transport, 2017-90, 1-64. 

  2. S. K. An & C. J. Kwak. (2020). Evaluation of Operations Efficiency in Special Transportation Services for the Transportation Vulnerable. Information systems review, 22(1), 307-325. 

  3. K. W. Kim, D. S Yun & J. J. Kim. (2020). Travel Demand Analysis of Special Transportation Systems for the Transportation Vulnerable using Big Data: A Case Study of Daegu Metropolitan City. Journal of Daegu Gyeongbuk development institute, 19(2), 43-61. 

  4. J. W. Park, J. T. Kim, S. M. Kim & J. Y. Kim. (2020). Effectiveness of decentralized management of special transportation systems for the elderly and disabled - A case study of Namyangju city. Journal of Korean Society of Road Engineers, 22(1), 95-104. 

  5. B. H. Lee & H. T. Yang. (2017). Study on analysis of current usage big data of special transport service of person with disabilities focused on Seoul City and Gyeonggi-do. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 7(10), 925-934. DOI : 10.14257/ajmahs.2017.10.55 

  6. D. S. Yun & G. S. Sin. (2010). Characteristics and Mode Choice Behavior of the Transportation Handicapped: A Case Study of Gyeongsan City. The Korea Spatial Planning Review, 66(-), 25-45 

  7. J. W. Park, J. T. Kim, S. M. Kim & J. Y. Kim. (2020). Social Network Analysis of Shared Bicycle Usage Pattern Based on Urban Characteristics: A Case Study of Seoul Data. Korean Society of Road Engineers, 22(1), 147-165. DOI : 10.14329/isr.2020.22.1.147 

  8. H. Park, S. H. Bae & S. I. Park. (2016). Properties of a Social Network Topology of Livestock Movements to Slaughterhouse in Korea. Journal of Veterinary Clinics, 33(5), 278-285. DOI : 10.17555/jvc.2016.10.33.5.278 

  9. T. J. Sin, S. Kim & S. Y. Jung. (202). Effects of the COVID-19 spread on the Northeast Asia Airport Network Centrality: Using Social Network Analysis. Journal of Digital Convergence, 18(5), 179-186. DOI : 10.14400/JDC.2020.18.5.179 

  10. S. H. Lee & Y. G. Oh. (2017). Analysis of the Spatio-temporal Migration and Degree Centrality of Migration Network. Journal of the Korean Society of Agricultural Engineers, 59(5), 1-15. DOI : 10.5389/KSAE.2017.59.5.001 

  11. Prabhakar, N. & Anbarasi, L.J. (2021). Exploration of the global air transport network using social network analysis. Korean Soc. Netw. Anal. Min, 11(26), 1-12. DOI : 10.1007/s13278-021-00735-1 

  12. Ali Lakhania et al. (2019). Disability support services in Queensland, Australia: Identifying service gaps through spatial analysis. Applied Geography, 110(-), 1-27. DOI : 10.1016/j.apgeog.2019.102045 

  13. K. K. Ko. (2007). The Review of Studies on Policy Network and the Application of Social Network Analysis. Korean Journal of Public Administration, 45(1), 137-164. 

  14. S. K. Kang, H. Yu & Y. J. Lee. (2016). Analyzing Disaster Response Terminologies by Text Mining and Social Network Analysis. Information systems review, 18(1), 141-155. DOI : 10.14329/isr.2016.18.1.141 

  15. S. S. Lee. (2012). Network Analysis Methodology. Seoul : nonhyungbook. 

  16. H. J. Chun & B. H. Leem. (2014). Face/non-face channel fit comparison of life insurance company and non-life insurance company using social network analysis. Journal of the Korean data & information science society, 25(6), 1207-1219. DOI : 10.7465/jkdi.2014.25.6.1207 

  17. C. G. Lee, M. J. Sung & Y. B. Lee. (2011). Discovering Customer Service Cool Trends in e-Commerce: Using Social Network Analysis with NodeXL. Information systems review, 13(1), 75-96. 

  18. K. Y. Kwak. (2017). Social Network Analysis. crbook. 

  19. J. W. Ko, C. M. Cho, S. H. Kim & W. H. Jung. (2015). A Study of Coastal Passenger Ship Routes through Social Network Analysis Method. Journal of Korean Navigation and Port Research, 39(3), 217-222. DOI : 10.5394/KINPR.2015.39.3.217 

  20. M. I. Kim, H. B. Kwak, W. K. Lee, M. S. Won & K. S. Koo. (2011). Study on Regional Spatial Autocorrelation of Forest Fire Occurrence in Korea. Journal of Korean Society for Geospatial Information Science, 19(2), 29-37. 

  21. K. W. Kim, S. H. Son, M. Y. Yang & S. H. Lee. (2020). Frequency of Special Transportation Estimation Model Using Deep Learning(Nadri Call). Korean Society of Transportation, 17(2), 43-51. 

  22. H. S. Lee. (2020). Everyday life difficulties of persons with disabilities on quality (CQR) research. Journal of Digital Convergence, 12(12), 561-570. DOI : 10.14400/JDC.2014.12.12.561 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로